Molarity and molality of a solution of a liquid (mol wt=50) in aqueous solution is 9 and 10 respectively. What is the density of solution?
Answers
Step-by-step explanation:
Solving:
Molarity
Molarity
Mass of Solution = Mass of Solvent + Mass of Solute
⇒ w" = w + w'
⇒ vd = w + w'
⇒ w' = vd - w ________ (3)
Putting Values in equation
⇒ M × v = mvd - mw
Density
D = 1.35g/cc
Answer:
Molarity
\large \mathtt{ = \dfrac{mass \: of \: solute}{molar \: mass \: of \: solute} \times \dfrac{100}{volume\: of \: solution} }=
molarmassofsolute
massofsolute
×
volumeofsolution
100
\:
\large \: \: \: \: \: \: \: \: \: \: : ⇒ \: \mathtt{m = \dfrac{w}{ {m} '} \times \dfrac{1000}{v} }:⇒m=
m
′
w
×
v
1000
\:
\large \: : ⇒ \: \mathtt{w = \dfrac{m \times m' \times v}{1000} } \: \rm \longrightarrow(1):⇒w=
1000
m×m
′
×v
⟶(1)
\:
Molarity
\large \mathtt{ = \dfrac{mass \: of \: solute}{molar \: mass \: of \: solute} \times \dfrac{100}{mass\: of \: solvent} }=
molarmassofsolute
massofsolute
×
massofsolvent
100
\:
\large \: \: \: \: \: \: \: \: \: \: : ⇒ \: \mathtt{m = \dfrac{w}{ {m} '} \times \dfrac{1000}{w'} }:⇒m=
m
′
w
×
w
′
1000
\:
\large \: : ⇒ \: \mathtt{w = \dfrac{m \times m' \times w'}{1000} } \: \rm \longrightarrow(2):⇒w=
1000
m×m
′
×w
′
⟶(2)
\:
Mass of Solution = Mass of Solvent + Mass of Solute
\:
⇒ w" = w + w'
\:
⇒ vd = w + w'
\:
⇒ w' = vd - w ________ (3)
\:
Putting Values in equation
\:
\large : ⇒ \: \mathtt{ \dfrac{m \times m' \times v}{1000} = \mathtt{ \dfrac{m \times m' \times (vd - w)}{1000} } } :⇒
1000
m×m
′
×v
=
1000
m×m
′
×(vd−w)
\:
⇒ M × v = mvd - mw
\:
\large⇒ \mathtt{ M × v = mvd -m \left( \dfrac{mm'v}{1000} \right)}⇒M×v=mvd−m(
1000
mm
′
v
)
\:
\large⇒ \mathtt{ M = m \left( d - \dfrac{m'M}{100} \right)}⇒M=m(d−
100
m
′
M
)
\:
\large⇒ \mathtt{ d = M \left( \dfrac{1}{m} + \dfrac{m'}{1000} \right)}⇒d=M(
m
1
+
1000
m
′
)
\:
Density
\large \mathtt{ = molarity\left( \dfrac{1}{molality} + \dfrac{molecular \: weight}{1000} \right)}=molarity(
molality
1
+
1000
molecularweight
)
\:
\large \: \: \: \: \: \: \: : ⇒ \mathtt{ d = 9 \left( \dfrac{1}{10} + \dfrac{50}{1000} \right)}:⇒d=9(
10
1
+
1000
50
)
\:
D = 1.35g/cc