molecular structure of DNA
Answers
Answer:
DNA structure
DNA is made up of molecules called nucleotides. Each nucleotide contains a phosphate group, a sugar group and a nitrogen base. The four types of nitrogen bases are adenine (A), thymine (T), guanine (G) and cytosine (C).
Explanation:
I Primary structure of the molecule: covalent backbone and bases aside
I-1 Phosphoric acid
I-2 Sugar
I-3 Nitrogenous bases
II Secondary and tertiary structures of the molecule -Three-dimentional conformation of DNA
II.1 Dinucleotides
II.2 DNA molecule
II.2.1 Hydrogen bonds: bases pairing
II.2.2 Major groove and minor groove
II.3 Non-B DNA
II.3.1 Z-DNA
II.3.2 Cruciform DNA and hairpin DNA
II.3.3 H-DNA or triplex DNA
II.3.4 G4-DNA
III Quaternary structure of the molecule - Chromatin
IV Various
IV.1 DNA and mitochondria
IV.2 DNA denaturation
Explain-
Deoxyribonucleic acid (DNA) IS the genetic information of most living organisms (a contrario, some viruses, called retroviruses, use ribonucleic acid as genetic information).
- DNA can be copied over generations of cells: DNA replication
- DNA can be translated into proteins: DNA transcription into RNA, further translated into proteins ,
- DNA can be repaired when needed: DNA repair .
Ribonucleic acids (RNAs) are described in another chapter ( mRNA, r-RNA, t-RNA... )
- DNA is a polymere, made of units called nucleotides (or mononucleotides).
- Nucleotides also have other functions: (energy carriers: ATP, GTP; cellular respiration: NAD, FAD; signal transduction: cyclic AMP; coenzymes: CoA, UDP; vitamins: nicotinamide mononucleotide, Vit B2).
Using the protein nomenclature, we could speak in terms of primary, secondary, tertiary and quaternary structures of the molecule:
I Primary structure of the molecule: covalent backbone and bases aside
A nucleoside is made of a sugar + a nitrogenous base.
A nucleotide is made of a phosphate + a sugar + a nitrogenous base. In DNA, the nucleotide is a deoxyribonucleotide (in RNA, the nucleotide is a ribonucleotide).
I-1 Phosphoric acid
Gives a phosphate group.
I-2 Sugar:
Deoxyribose, which is a cyclic pentose (5-carbon sugar). Note: the sugar in RNA is a ribose. Carbons in the sugar are noted from 1' to 5'. A nitrogen atom from the nitrogenous base links to C1' (glycosidic link), and the phosphate links to C5' (ester link) to make the nucleotide. The nucleotide is therefore: phosphate - C5' sugar C1' - base.
I-3 Nitrogenous bases:
Aromatic heterocycles; there are purines and pyrimidines.
- Purines: adenine (A) and guanine (G).
- Pyrimidines: cytosine (C) and thymine (T) (Note: thymine is replaced by uracyle (U) in RNA).
Note: other nitrogenous bases exist, in particular methylated bases derived from the above mentioned; methylation of the bases has a functional role (see chapter ad hoc).
Glossary:
- Nucleoside names: deoxyribonucleosides in DNA: deoxyadenosine, deoxyguanosine, deoxycytidine, deoxythymidine in DNA (ribonucleosides in RNA: adenosine