Math, asked by akkiprashu0786, 1 year ago

Monthly income of Ramesh is Rs. 5000 and he
spends it in ratio 2 : 5 on clothes and food. If price
of clothes is increased by 10% and price of food is
increased by 20%, then by how much percent his
income should be increased so that the ratio of his
expenditure remains the same.

Answers

Answered by sushiladevi4418
4

Answer:

17.1428 %

Step-by-step explanation:

Given data:

Monthly income of Ramesh is = Rs. 5000

Let the expenditure on clothes = 2x

And the expenditure on food = 5x

If the price  of clothes is increased by 10%, that is

2x + 10% of 2x = 2.2x

If the price of food is  increased by 20%, that is

5x + 20% of 5x = 6x

Therefore,

Total expenditure = 2.2x + 6x = 8.2x

Now,

2x +5x = 5000

7x = 5000

x = 5000/7

Total expenditure = 2.2x + 6x = 8.2x = 8.2 × 5000/7 = Rs 5857.14

So,

Increase in income = 5857.14  - 5000 = 857.14

Therefore,

Percent increase in income = \frac{857.14}{5000}\times 100=17.1428 \%

Answered by akshays004
3

Answer:

Step-by-step explanation:

                C     :    F        Total Exp.

5000       2     :    5             7

Due to increase in price new exp. will be

                2.2  :    6            8.2

%age increase in exp.   {(8.2 - 7) ÷ 7}*100  = 17 1/7%

So to keep the ratio same income should also be increased by 17 1/7%.

                                     

Similar questions