Morphological adaptions of leaves to check rate of transpiration
Answers
Answered by
3
These plant parameters help plants control rates of transpiration by serving as forms of resistance to water movement out of the plant.
Stomata – Stomata are pores in the leaf that allow gas exchange where water vapor leaves the plant and carbon dioxide enters. Special cells called guard cells control each pore’s opening or closing. When stomata are open, transpiration rates increase; when they are closed, transpiration rates decrease.
Boundary layer – The boundary layer is a thin layer of still air hugging the surface of the leaf. This layer of air is not moving. For transpiration to occur, water vapor leaving the stomata must diffuse through this motionless layer to reach the atmosphere where the water vapor will be removed by moving air. The larger the boundary layer, the slower the rates of transpiration.
Plants can alter the size of their boundary layers around leaves through a variety of structural features. Leaves that possess many hairs or pubescence will have larger boundary layers; the hairs serve as mini-wind breaks by increasing the layer of still air around the leaf surface and slowing transpiration rates. Some plants possess stomata that are sunken into the leaf surface, dramatically increasing the boundary layer and slowing transpiration. Boundary layers increase as leaf size increases, reducing rates of transpiration as well. For example, plants from desert climates often have small leaves so that their small boundary layers will help cool the leaf with higher rates of transpiration.
Cuticle – The cuticle is the waxy layer present on all above-ground tissue of a plant and serves as a barrier to water movement out of a leaf. Because the cuticle is made of wax, it is very hydrophobic or ‘water-repelling’; therefore, water does not move through it very easily. The thicker the cuticle layer on a leaf surface, the slower the transpiration rate. Cuticle thickness varies widely among plant species. In general, plants from hot, dry climates have thicker cuticles than plants from cool, moist climates. In addition, leaves that develop under direct sunlight will have much thicker cuticles than leaves that develop under shade conditions.
Stomata – Stomata are pores in the leaf that allow gas exchange where water vapor leaves the plant and carbon dioxide enters. Special cells called guard cells control each pore’s opening or closing. When stomata are open, transpiration rates increase; when they are closed, transpiration rates decrease.
Boundary layer – The boundary layer is a thin layer of still air hugging the surface of the leaf. This layer of air is not moving. For transpiration to occur, water vapor leaving the stomata must diffuse through this motionless layer to reach the atmosphere where the water vapor will be removed by moving air. The larger the boundary layer, the slower the rates of transpiration.
Plants can alter the size of their boundary layers around leaves through a variety of structural features. Leaves that possess many hairs or pubescence will have larger boundary layers; the hairs serve as mini-wind breaks by increasing the layer of still air around the leaf surface and slowing transpiration rates. Some plants possess stomata that are sunken into the leaf surface, dramatically increasing the boundary layer and slowing transpiration. Boundary layers increase as leaf size increases, reducing rates of transpiration as well. For example, plants from desert climates often have small leaves so that their small boundary layers will help cool the leaf with higher rates of transpiration.
Cuticle – The cuticle is the waxy layer present on all above-ground tissue of a plant and serves as a barrier to water movement out of a leaf. Because the cuticle is made of wax, it is very hydrophobic or ‘water-repelling’; therefore, water does not move through it very easily. The thicker the cuticle layer on a leaf surface, the slower the transpiration rate. Cuticle thickness varies widely among plant species. In general, plants from hot, dry climates have thicker cuticles than plants from cool, moist climates. In addition, leaves that develop under direct sunlight will have much thicker cuticles than leaves that develop under shade conditions.
Answered by
4
Hope it helped you ✨✨✨✨✨
Attachments:
Similar questions
Science,
7 months ago
Chemistry,
7 months ago
Social Sciences,
7 months ago
Business Studies,
1 year ago
Math,
1 year ago