MP post ki Jo vacancy nikli he last date 7 he Aur site nhi open Ho rhi he to mujhe complain krna he taaki site open Ho jaaye to mujhe kya krna pdega open...
Answers
\tt{\bf{ Area = \sqrt{ 96 }}}
\tt{\bf{ Area = \sqrt{ 16 \times 6 }}}
\tt{\bf{ Area = \sqrt{ 16 } \times \sqrt{6} }}
\tt{\bf{ Area = 4 \sqrt{ 6 }}}
\tt{ ( \; \because \; \sqrt{6} \; = 2.44 ) }
This implies,
\tt{\bf{ Area = 4 \times 2.44 }}
\tt{\bf{ Area = 9.76 \; {cm}^{2} }}
Therefore,
☞ Area of the ∆ = 9.76 cm²
Diagram :-
Answers
THE BRAINLIEST ANSWER!
MisterIncredible
MisterIncredibleBrainly Stars
Given :-
Measurements of the triangle are 7cm , 4 cm and 5 cm
Required to find :-
Area of the triangle ?
Formulae used :-
\rm{\bf{s = \dfrac{ a + b + c }{ 2 } }}
\tt{\bf{ Area = \sqrt{ s ( s - a )( s - b )( s - c ) }}}
Solution :-
Given information :-
Measurements of the triangle are ; 7cm , 4cm & 5 cm
We need to find the area of the triangle .
In order to find it's area we should use ; Herons formula
So,
Let's find the semi - perimeter of the given triangle .
Using the formula ;
\rm{\bf{s = \dfrac{ a + b + c }{ 2 } }}
\rm{\bf{s = \dfrac{ 7 + 4 + 5 }{ 2 } }}
\rm{\bf{s = \dfrac{ 16 }{ 2 } }}
\rm{\bf{s = 8 }}
Hence,
Semi - perimeter of the ∆ is 8
Using Heron's formula ;
\tt{\bf{ Area = \sqrt{ s ( s - a )( s - b )( s - c ) }}}
Here ,
s = semi - perimeter
a , b , c = Three sides of the triangle
Substituting the values ;
\tt{\bf{ Area = \sqrt{ 8 ( 8 - 7 )( 8 - 4 )( 8 - 5 ) }}}
\tt{\bf{ Area = \sqrt{ 8 ( 1 )( 4 )( 3 ) }}}
\tt{\bf{ Area = \sqrt{ 8 \times 12 }}}
\tt{\bf{ Area = \sqrt{ 96 }}}
\tt{\bf{ Area = 4 \sqrt{ 6 }}}
\tt{ ( \; \because \; \sqrt{6} \; = 2.44 ) }
This implies,
\tt{\bf{ Area = 4 \times 2.44 }}
\tt{\bf{ Area = 9.76 \; {cm}^{2} }}
Therefore,
☞ Area of the ∆ = 9.76 cm²
Diagram :-
Explanation: