Math, asked by shubhbhatt3819, 1 year ago

Mr.X and mr.Y enter in to a railway compartment having six vacant seats. The number of ways in which they can occupy the seats is ?

Answers

Answered by MaheswariS
11

\underline{\textbf{Given:}}

\textsf{Mr. X and Mr. Y enter into a railway compartment}

\textsf{having six seats}

\underline{\textbf{To find:}}

\textsf{The number of ways in which they can occupy the seats}

\underline{\textbf{Solution:}}

\textsf{Since there are 6 seats,}

\textsf{X can occupy any one of the seat in 6 ways}

\textsf{Y can occupy the remaining 5 seats in 5 ways }

\textsf{By fndamental principle of multiplication,}

\textsf{Total number of ways they can occupy the seats}

\mathsf{=6{\times}5}

\mathsf{=30\;ways}

Answered by chaitrachaitra454
0

Step-by-step explanation:

\underline{\textbf{Given:}}Given:

\textsf{Mr. X and Mr. Y enter into a railway compartment}Mr. X and Mr. Y enter into a railway compartment

\textsf{having six seats}having six seats

\underline{\textbf{To find:}}To find:

\textsf{The number of ways in which they can occupy the seats}The number of ways in which they can occupy the seats

\underline{\textbf{Solution:}}Solution:

\textsf{Since there are 6 seats,}Since there are 6 seats,

\textsf{X can occupy any one of the seat in 6 ways}X can occupy any one of the seat in 6 ways

\textsf{Y can occupy the remaining 5 seats in 5 ways }Y can occupy the remaining 5 seats in 5 ways 

\textsf{By fndamental principle of multiplication,}By fndamental principle of multiplication,

\textsf{Total number of ways they can occupy the seats}Total number of ways they can occupy the seats

\mathsf{=6{\times}5}=6×5

\mathsf{=30\;ways}=30ways

Similar questions