Math, asked by aarohi3128, 1 year ago

Mrs. Mathew opened a recurring deposit account in a certain bank and deposited rs.640 per month for 4.5 years. find the maturity value of this account, if the bank pays interest at the rate of 12percent per year

Answers

Answered by bbkpriyaverma
3

Answer:

if you mark me as brainlist i will follow u

Answered by MissSolitary
7

 \underline{ \underline{{ \huge{ \textbf{Q}}} \sf{UESTION -}}}

Mrs. Mathew opened a Recurring Deposit account in a certain Bank and deposited ₹ 640 per month for 4.5 years. Find the maturity value of this account, if the bank pays interest at the rate of 12% per year.

 \underline{ \underline{{ \huge{ \textbf{G}}} \sf{IVEN -}}}

  • Principal (P) = ₹640
  • number of months = 4.5 = 4½ years to months

 \sf \: 4  \frac{1}{2}  =  \frac{9}{2}  \times 12 \: months \\  \\  \sf \implies \: 54 \: months

  • Rate of interest (r) = 12%

  \underline{ \underline{{ \huge{ \textbf{T}}} \sf{O } \:  \:  \:  {{ \huge{ \textbf{F}}} \sf{IND -}}}}

  • Maturity value of the account.

\underline{ \underline{{ \huge{ \textbf{F}}} \sf{ORMULA } \:  \: { \huge{ \textbf{U}}} \sf{ SED -}}}

 \boxed{ \bold{ \gray{M.V = P  \times n +  \frac{P \times n(n + 1)}{2 \times 12} \times  \frac{r}{100}  }}}

where,

P is the principal.

n is the number of months.

r is the rate of interest.

\underline{ \underline{{ \huge{ \textbf{S}}} \sf{ OLUTION - } }}

 \sf \: M.V = 640 \times 54 +  \frac{640 \times 54(54 + 1)}{2 \times 12}  \times  \frac{12}{100}  \\  \\  \sf \implies \:  \: 34560 +  \frac{640 \times 54 \times 55}{2 \times 12}  \times  \frac{12}{100}  \\  \\  \sf \implies \: 34560 +  \frac{ \cancel{64} ^{ \cancel{32} ^{16} }  \cancel{0} \times 54 \times \cancel {55} ^{11} }{ \cancel{2} \times  \cancel{12}}  \times  \frac{ \cancel{12}}{ \cancel{10} ^{ \cancel{2}}  \cancel{0}}  \\  \\  \sf \implies \: 34560 + 9504 \\ \\   \boxed{ \purple{ \sf \implies \: ₹ \: 44,064 \:  \:  \: ans..}}

_____________________

@MissSolitary✌️

____

Similar questions