Multiplication is associative in rational numbers.Explain with an example?
Answers
Answered by
52
HEY BUDDY.
HERE IS YOUR SOLUTION.
(a/b × c/d) × e/f = a/b × (c/d × e/f)
For example:
Consider the rationals -5/2, -7/4 and 1/3 we have
(-5/2 × (-7)/4 ) × 1/3 = {(-5) × (-7)}/(2 × 4) ×1/3} = (35/8 × 1/3)
= (35 × 1)/(8 × 3) = 35/24
and (-5)/2 × (-7/4 × 1/3) = -5/2 × {(-7) × 1}/(4 × 3) = (-5/2 × -7/12)
= {(-5) × (-7)}/(2 × 12) = 35/24
Therefore, (-5/2 × -7/4 ) × 1/3 = (-5/2) × (-7/4 × 1/3) .
HOPE U GOT IT.
HERE IS YOUR SOLUTION.
(a/b × c/d) × e/f = a/b × (c/d × e/f)
For example:
Consider the rationals -5/2, -7/4 and 1/3 we have
(-5/2 × (-7)/4 ) × 1/3 = {(-5) × (-7)}/(2 × 4) ×1/3} = (35/8 × 1/3)
= (35 × 1)/(8 × 3) = 35/24
and (-5)/2 × (-7/4 × 1/3) = -5/2 × {(-7) × 1}/(4 × 3) = (-5/2 × -7/12)
= {(-5) × (-7)}/(2 × 12) = 35/24
Therefore, (-5/2 × -7/4 ) × 1/3 = (-5/2) × (-7/4 × 1/3) .
HOPE U GOT IT.
Answered by
24
The associative property states that you can add or multiply regardless of how the numbers are grouped. By 'grouped' we mean 'how you use parenthesis'. In other words, if you are adding or multiplying it does not matter where you put the parenthesis. example is Consider the rational numbers 1/2 and 5/7. Then,
(1/2 × 5/7) = (1 × 5)/(2 × 7) = 5/14, is a rational number.
(1/2 × 5/7) = (1 × 5)/(2 × 7) = 5/14, is a rational number.
Similar questions