Math, asked by adityasainityyy27, 9 months ago

Multiply 2/3x³y³ by (3x-15y) and verify the result for x= 2, y= -1 proper way​

Answers

Answered by harshpatel8686
1

Answer:

J.E. Kerrich from Britain scored 5067 heads in 10,000 tosses of a coin. The experimental

probability of getting a head, in this case was 0.5067

Answered by Rohith200422
3

Question:

Multiply:-

\sf \frac{ \frac{2}{3}  {x}^{3} {y}^{3}  }{3x - 15y}

and verify the result for x = 2, y = -1 .

Answer:

The \: value \: is \:  \underline{ \:\underline{ \:   \sf \pink{\bold{  \frac{ - 16}{63}}}  \: } \: }

Given:

★ An expression is given,

\frac{ \frac{2}{3}  {x}^{3} {y}^{3}  }{3x - 15y}

\bigstar   \: The \: value \: of \: x = 2,y =  - 1

Step-by-step explanation:

 \frac{ \frac{2}{3}  {x}^{3} {y}^{3}  }{3x - 15y}

\implies  \frac{2 \times  {x}^{3} \times  {y}^{3}  }{3(3x - 15y)}

\implies  \frac{2 {x}^{3} {y}^{3}  }{9x - 45y}

Now substituting the values of x and y

\implies  \frac{2  \times {(2)}^{3} \times  {( - 1)}^{3}  }{9(2) - 45( - 1)}

\implies  \frac{2 \times 8 \times  - 1}{18  +  45}

\implies  \boxed{   \sf\frac{ - 16}{63}}

 \therefore The \: value \: is \:  \underline{ \:  \bold{  \frac{ - 16}{63}}  \: }

Verification:

 \sf \frac{ \frac{2}{3}  {x}^{3} {y}^{3}  }{3x - 15y}  =  \frac{ - 16}{63}

To prove L.H.S = R.H.S

\implies  \frac{ \frac{2}{3} \times  {(2)}^{3}  \times  {( - 1)}^{3}  }{3(2) - 15( - 1)}

\implies  \frac{ \frac{2 \times 8 \times  - 1}{3} }{6 + 15}

\implies  \frac{ - 16}{3(6 + 15)}

\implies  \frac{ - 16}{18 + 15}

\implies  \boxed{   \sf\frac{ - 16}{63}}

\therefore  \underline{ \: \bold{L.H.S = R.H.S } \: }

Hence verified.

Similar questions