Math, asked by gagansandhu70, 1 year ago

multiply 4√6 by 2√8​

Answers

Answered by AbhijithPrakash
5

Answer:

4\sqrt{6}\times \:2\sqrt{8}=32\sqrt{3}\quad \left(\mathrm{Decimal:\quad }\:55.42563\dots \right)

Step-by-step explanation:

4\sqrt{6}\times \:2\sqrt{8}

\gray{\mathrm{Factor\:integer\:}4=2^2}

=2^2\sqrt{6}\times \:2\sqrt{8}

\gray{\mathrm{Factor\:integer\:}6=2\times \:3}

=2^2\sqrt{2\times \:3}\times \:2\sqrt{8}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}}

\gray{\sqrt{2\times \:3}=\sqrt{2}\sqrt{3}}

=2^2\sqrt{2}\sqrt{3}\times \:2\sqrt{8}

\gray{\mathrm{Factor\:integer\:}8=2^3}

=2^2\sqrt{2}\sqrt{3}\times \:2\sqrt{2^3}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}}

\gray{\sqrt{2^3}=2^{3\times \dfrac{1}{2}}}

=2^2\sqrt{2}\sqrt{3}\times \:2\times \:2^{3\times \dfrac{1}{2}}

\gray{\mathrm{Refine}}

=2^2\sqrt{2}\sqrt{3}\times \:2\times \:2^{\dfrac{3}{2}}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \:a^b\times \:a^c=a^{b+c}}

\gray{2^2\sqrt{2}\times \:2\times \:2^{\dfrac{3}{2}}=\:2^2\times \:2\times \:2^{\dfrac{1}{2}}\times \:2^{\dfrac{3}{2}}=\:2^{2+\dfrac{1}{2}+1+\dfrac{3}{2}}}

=\sqrt{3}\times \:2^{2+\dfrac{1}{2}+1+\dfrac{3}{2}}

[text]\gray{2^{2+\dfrac{1}{2}+1+\dfrac{3}{2}}=2^5}[/tex]

=2^5\sqrt{3}

\gray{2^5=32}

=32\sqrt{3}

Similar questions