Math, asked by anjali6399, 1 year ago

multiply (4x^2+3y)by(3x^2-4y) and verify the result for x=1,y=2

Answers

Answered by pulakmath007
35

SOLUTION

TO DETERMINE

  • To multiply

 \sf{(4 {x}^{2} + 3y)(3 {x}^{2}  - 4y) }

  • TO verify the result for x = 1 & y = 2

EVALUATION

MULTIPLICATION

 \sf{(4 {x}^{2} + 3y)(3 {x}^{2}  - 4y) }

 =  \sf{4 {x}^{2}(3 {x}^{2}  - 4y) + 3y(3 {x}^{2}  - 4y)}

 =  \sf{12 {x}^{4}  - 16 {x}^{2}y + 9 {x}^{2}y - 12 {y}^{2} }

 =  \sf{12 {x}^{4}  -7 {x}^{2}y - 12 {y}^{2} }

Hence

 \sf{(4 {x}^{2} + 3y)(3 {x}^{2}  - 4y) = 12 {x}^{4}  -7 {x}^{2}y - 12 {y}^{2} }

VERIFICATION

We need to verify for x = 1 & y = 2 the below result

 \sf{(4 {x}^{2} + 3y)(3 {x}^{2}  - 4y) = 12 {x}^{4}  -7 {x}^{2}y - 12 {y}^{2} }

LHS

 \sf{(4 {x}^{2} + 3y)(3 {x}^{2}  - 4y)  }

 =  \sf{ \bigg[4 \times  {(1)}^{2} + 3 \times 2\bigg]\bigg[3  \times {(1)}^{2}  - 4 \times 2 \bigg] }

 = (4 + 6)(3 - 8)

 = 10 \times  (- 5)

 =  - 50

RHS

 \sf{ =  12 {x}^{4}  -7 {x}^{2}y - 12 {y}^{2} }

 =  \sf{ 12 {(1)}^{4}  -7 \times  {(1)}^{2} \times 2 - 12 \times  {(2)}^{2} }

 =  \sf{ 12 - 14 - 48 }

 =  - 50

∴ LHS = RHS

Hence verified

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. divide : (4x²- 100) ÷ 6(x+5)

https://brainly.in/question/15559404

2. 561234 is a multiple of 3.  true or false

https://brainly.in/question/30515896

Answered by mad210203
12

Given :

The data is given as, \[\left( {4{x^2} + 3y} \right) \times \left( {3{x^2} - 4y} \right)\].

To Find:

We have to find the result of \[\left( {4{x^2} + 3y} \right) \times \left( {3{x^2} - 4y} \right)\] and then verify the answer for x=1, y=2.

Solution:

  • First, we will multiply the two polynomials,

        \[\left( {4{x^2} + 3y} \right) \times \left( {3{x^2} - 4y} \right)\]\\            .....L.H.S

         \[\begin{array}{l} \Rightarrow 12{x^4} - 16{x^2}y + 9{x^2}y - 12{y^2}\\\\ \Rightarrow 12{x^4} - 7{x^2}y - 12{y^2}\end{array}\]....R.H.S

  • Secondly, we need to verify the result for x=1 and y=2

        L.H.S

       Substitute the values of  x=1 and y=2 in LHS:

       Then we get,

                       \[\begin{array}{l} \Rightarrow \left( {4{x^2} + 3y} \right) \times \left( {3{x^2} - 4y} \right)\\\\ \Rightarrow \left( {4 \times {1^2} + 3 \times 2} \right) \times \left( {3 \times {1^2} - 4 \times 2} \right)\\\\ \Rightarrow 10 \times  - 5\\\\ \Rightarrow  - 50\end{array}\]

        R.H.S

       Substitute the values of x=1 and y=2 in RHS:

       Then we get,  

                       \[\begin{array}{l} \Rightarrow 12{x^4} - 16{x^2}y + 9{x^2}y - 12{y^2}\\\\ \Rightarrow 12{x^4} - 7{x^2}y - 12{y^2}\\\\ \Rightarrow 12 \times {1^4} - 7 \times {1^2} \times 2 - 12 \times {2^2}\\\\ \Rightarrow  - 50\end{array}\]

   ⇒ LHS = RHS. Hence, the answer is verified.

         

Similar questions