multiply following and verify the result for X equal to 2 y equal to 1 and z equal to 3
Attachments:
Answers
Answered by
0
Answer:
x
3
y
3
×(3x−15y)
=
3
2
x
3
y
3
⋅3x−
3
2
x
3
y
3
⋅15y
=2x
4
y
3
−10x
3
y
4
Now, for x=2,y=−1, we have
L.H.S.-
3
2
x
3
y
3
×(3x−15y)
=
3
2
(2)
3
(−1)
3
×(3⋅2−15⋅(−1))
=
3
2
⋅8⋅(−1)×(6+15)
=(−
3
16
)×21
=−112
R.H.S.-
2x
4
y
3
−10x
3
y
4
=2(2)
4
(−1)
3
−10(2)
3
(−1)
4
=2⋅16⋅(−1)−10⋅8⋅1
=−32−80
=−112
∵ L.H.S. = R.H.S.
Hence verified.
Answered by
3
Answer:
32x3y3×(3x−15y)
=32x3y3⋅3x−32x3y3⋅15y
=2x4y3−10x3y4
Now, for x=2,y=−1, we have
L.H.S.-
32x3y3×(3x−15y)
=32(2)3(−1)3×(3⋅2−15⋅(−1))
=32⋅8⋅(−1)×(6+15)
=(−316)×21
=−112
R.H.S.-
2x4y3−10x3y4
Similar questions