Math, asked by Hiteshbehera74, 1 year ago

#must solve
#Find X.

Attachments:

Answers

Answered by Anonymous
14
\underline{\underline{\large{\mathfrak{Solution : }}}}




\underline{\mathsf{To \: Find \longrightarrow Value \: of \: x.}}




 \mathsf{ \implies x \: + \: log_{10}(1 \: + \: {2}^{ \normalsize{x}} ) \: = \: x \: log_{10} \: 5 \: + \: log_{10} \: 6} \\ \\ \\ \\ \mathsf{ \implies x \: log_{10} \: 10 \: + \: log_{10}(1 \: + \: {2}^{ \normalsize{x}} ) \: = \: x \: log_{10} \: 5 \: + \: log_{10} \: 6 \qquad \boxed{ \mathsf{\implies log_{10} \: 10 \: = \: 1 \: }}}




 \mathsf{ \implies log_{10} \: {10}^{ \normalsize{x}} \: + \: log_{10}(1 \: + \: {2}^{ \normalsize{x}} ) \: = \: log_{10} \: {5}^{ \normalsize{x}} \: + \: log_{10} \: 6} \qquad \boxed{ \mathsf{ \implies c \: log_{a} \: b \: = \: log_{a} \: {b}^{ \normalsize{c}} }}




 \mathsf{\implies log_{10}\{ 10^{\normalsize{x}} ( 1 \: + \: 2^{\normalsize{x}}) \} \: = \: log_{10}( 6 \: \times 5^{\normalsize{x}})} \qquad \boxed{ \mathsf{ \implies log_{a} \: b \: + \: log_{a} \: c \: = \: log_{a} \: bc}}




\underline{\textsf{Using Antilog : }}



 \mathsf{ \implies {10}^{ \normalsize{x}}( 1 \: + \: {2}^{ \normalsize{x}} ) \: = \: {5}^{ \normalsize{x}} \: \times \: 6 }




\mathsf{\implies \dfrac{10^{\normalsize{x}}( 1 \: + \: 2^{\normalsize{x}})}{5^{\normalsize{x}}} \: = \: 6}<br />




\mathsf{\implies 2^{\normalsize{x}}(1 \: + \: 2^{\normalsize{x}} )\: = \: 6}




\mathsf{Let , \: 2^{\normalsize{x}} \: =\: y \: \colon }




\mathsf{\implies y( 1 \: + \: y ) \: = \: 6} \\ \\ \\<br /><br />\mathsf{\implies y \: + \: y^{2} \: = \: 6} \\ \\ \\<br /><br />\mathsf{\implies y^{2}\: + \: y \: - \: 6 \: = \: 0} \\ \\ \\<br /><br />\mathsf{\implies y^{2} \: + \: 3y \: - \: 2y \: - \: 6 \: = \: 0} \\ \\ \\<br /><br />\mathsf{\implies y(y \: + \: 3 ) \: - \: 2(y \: + \: 3 ) \: = \: 0} \\ \\ \\<br /><br />\mathsf{\implies ( y \: + \: 3)( y \: - \: 2) \: = \: 0} \\ \ \\<br /><br />\underline{\textsf{By Zero Product Rule : }} \\ \\ \\ <br /><br />\mathsf{\implies y \: = \: 2 \: or \: -3 }



\underline{\textsf{Now, }} \\ \\ \\<br /><br />\mathsf{\implies 2^{x} \: = \: 2 \quad \: or \: \implies 2^{x} \: = \: -3 \: [Not \: Possible ]}




\textsf{On Comparison : } \\ \\ \\<br /><br />\mathsf{\therefore \quad x \: = \: 1 }

Hiteshbehera74: excellent
Hiteshbehera74: very much thanks
Anonymous: My Pleasure !
Hiteshbehera74: really thanks
dikshaverma4you: Great !! :)
Hiteshbehera74: good
Anonymous: Thanks didu and @Hitesh
Answered by sairaju2006
0

Answer:

x=6

Step-by-step explanation:

please put brainlist answer

Similar questions