my challenge who can solve this question there are three question any one solve the question I thik no
Attachments:
seth87:
i know bro
Answers
Answered by
0
Challenge Accepted,.
Step-by-step explanation:
Given :
The sum of and it's reciprocal is 1,
a ≠ 0, b ≠ 0,
Then, find a³ + b³
Solution :
's reciprocal is ,.
⇒
⇒
⇒
⇒ ...(i)
We know that,
⇒ from (i)
⇒
__
If x² = y + z,
y² = x + z,
z² = x + y
Then, find
Solution :
⇒
⇒
⇒
Multiplying bot numerator & denominator by their respective variables,.
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
__
Given :
a² + b² = 2,
c² + d² = 1,.
Then, (ad - bc)² + (ac + bd)²
Solution :
(ad - bc)² + (ac + bd)²
⇒ [(ad)² - 2(ad)(bc) + (bc)²] + [(ac)² + 2(ac)(bd) + (bd)²]
⇒ a²d² - 2abcd + b²c² + a²c² + 2abcd + b²d²
⇒ a²d² + b²c² + a²c² + b²d²
⇒ a² (c² + d²) + b² (c² + d²)
⇒ (a² + b²)(c² + d²) = (2)(1) = 2
__
Challenge Completed,.
Similar questions