Math, asked by muktadirucall1, 1 month ago

n- th derivative of sin 6x cos 4x

Answers

Answered by ejasm8921
0

Step-by-step explanation:

SUCCESSIVE DIFFERENTIATION

Aditya S. asked • 06/30/18

Find the nth derivative of Cos^6x

Cos6x nth derivative

Follow2

Add comment

More

1 Expert Answer

By:

Bobosharif S. answered • 06/30/18

TUTOR 4.4 (32)

Mathematics/Statistics Tutor

SEE TUTORS LIKE THIS

f(x)=cos6x

f'(x)=-6cos5(x) sin(x)=-3cos4(x)sin(2x)

f''(x)=-6(-5cos4(x)sin2(x)+cos6(x) )=6cos4(x)(2-3cos(2x))

f'''(x)=-120cos3(x) sin3(x)+60cos5(x) sin(x)+36cos5(x) sin(x)

=12cos3(x)(-1 + 9cos(2x))sin(x)

f(iv)(x)=6cos2(x)(11-22cos(2x)+27cos(4x))

f(v)(x)=-3(5sin(2x)+64sin(4x)+81sin(6x))

f(vi)(x)=-6(5cos(2x)+128cos(4x)+243cos(6x))

f(7)(x)=12(5sin(2x)+256sin(4x)+729sin(6x))

f(8)(x)=24(5cos(2x)+512cos(4x)+2187cos(6x) )

f(2n-1)(x)=(-1)n+13*2n-2(5sin(2x)+2n+3sin(4x)+3n+1sin(6x)), n=3,4,..

f(2n)(x)=(-1)n3*2n-1(5cos(2x)+2n+4cos(4x)+3ncos(6x)),n=3,4,...

Answered by avishek799
0

Step-by-step explanation:

Here the given expression

\displaystyle \sf{ \sin 6x \cos 4x }sin6xcos4x

= \displaystyle \sf{ \frac{1}{2} \bigg( 2 \sin 6x \cos 4x\bigg) }=

2

1

(2sin6xcos4x)

= \displaystyle \sf{ \frac{1}{2} \bigg( \sin 10x + \sin 2x\bigg) }=

2

1

(sin10x+sin2x)

Now

\displaystyle \sf{ \frac{ {d}^{n} }{d {x}^{n} } \bigg( \sin 6x \cos 4x \bigg)}

dx

n

d

n

(sin6xcos4x)

= \displaystyle \sf{ \frac{1}{2} \times \frac{ {d}^{n} }{d {x}^{n} }( \sin 10x) + \frac{1}{2} \times \frac{ {d}^{n} }{d {x}^{n} }( \sin 2x)}=

2

1

×

dx

n

d

n

(sin10x)+

2

1

×

dx

n

d

n

(sin2x)

\displaystyle \sf{= \frac{1}{2} \times {10}^{n} \sin \bigg( \frac{n\pi}{2} + 10x\bigg) + \frac{1}{2} \times {10}^{n} \sin \bigg( \frac{n\pi}{2} + 2x\bigg) }=

2

1

×10

n

sin(

2

+10x)+

2

1

×10

n

sin(

2

+2x)

\displaystyle \sf{= \frac{ {10}^{n}}{2} \times \Bigg[ \sin \bigg( \frac{n\pi}{2} + 10x\bigg) + \sin \bigg( \frac{n\pi}{2} + 2x\bigg)\Bigg] }=

2

10

n

×[sin(

2

+10x)+sin(

Similar questions