Math, asked by vobomahee, 3 months ago

n the figure, ABCD is a quadrilateral. F is a point on AD such that = 2.1 cm and = 4.9. E and G are points on AC and AB respectively such that EF∥ CD and GE∥BC. Find ( ∆)/( ∆)

Answers

Answered by KnowtoGrow
1

Answer:

Given:

  1. A quadrilateral ABCD in which:
  2. AF= 2.1 cm
  3. FD=4.9 cm
  4. EF ∥CD
  5. GE∥BC

To find: \frac{Ar(BCD)}{Ar(GEF)}

Proof:

In Δ ABC, GE∥BC (Given)

\frac{AG}{GB} = \frac{AF}{FD}---(1)  [If a line is drawn parallel to any one side of a triangle                                     to intersect the other two sides at distinct points, then                                     the two sides are divided in the same ratio]

Similarly, in Δ ACD,

\frac{AE}{EC} = \frac{AF}{FD} -----(2)

By (1) and (2),

\frac{AG}{GB} = \frac{AE}{EC}

∴ GF || BD                      [ By the converse of B.P.T, the above used theorem]

In Δ AGF and Δ ABD

  1. ∠A= ∠A                                               (Common)
  2. ∠AFG=∠ADB                                      (Corresponding angles are equal)

∴ Δ AGF ~ Δ ABD                           (By AA similarity criterion)

\frac{AF}{AD} = \frac{GF}{BD}                                      (Similar triangles have proportional sides)

\frac{2.1}{7} =\frac{GF}{BD}

\frac{3}{10} =\frac{GF}{BD}

\frac{BD}{GF} = \frac{10}{3}

Now,

\frac{Ar(BCD)}{Ar(GEF)} = (\frac{BD}{GF})^{2}      [The ratio of the area of both triangles is proportional

                                 to the square of the ratio of their corresponding sides}    

\frac{Ar(BCD)}{Ar(GEF)} = (\frac{10}{3})^{2}

\frac{Ar(BCD)}{Ar(GEF)} = (\frac{100}{9})

Ar(BCD) : Ar(GEF) = 100:9

Hence,

Ar(BCD) : Ar(GEF) = 100:9

Proved.

P.F.A the rough figure.

Hope you got that.

Thank You.

Attachments:
Similar questions