निम्न समीकरणों के मूल ज्ञात कीजिए:
(i) x-
(ii)
Answers
Answered by
8
(i) x - 1/x = 3 , x ≠ 0
(x² - 1)/x = 3
x² - 1 = 3x
x² - 3x - 1 = 0
हम जानते हैं कि किसी द्विघात समीकरण ax² + bx + c = 0 का मूल ज्ञात करने के लिए उपयोग में आने वाले सूत्र हैं
इसीलिए,
x = {3 ± √(3² - 4×-1)}/2
= (3 ± √13)/2
(ii) 1/(x + 4) - 1/(x - 7) = 11/30 , x ≠ -4, 7
{(x - 7) - (x + 4)}/(x + 4)(x - 7) = 11/30
-11/(x² - 7x + 4x - 28) = 11/30
-1/(x² - 3x - 28) = 1/30
x² - 3x - 28 = -30
x² - 3x - 28 + 30 = 0
x² - 3x + 2 = 0
x² - x - 2x + 2 = 0
x(x - 1) - 2(x - 1) = 0
(x - 1)(x - 2) = 0
x = 1 , 2
(x² - 1)/x = 3
x² - 1 = 3x
x² - 3x - 1 = 0
हम जानते हैं कि किसी द्विघात समीकरण ax² + bx + c = 0 का मूल ज्ञात करने के लिए उपयोग में आने वाले सूत्र हैं
इसीलिए,
x = {3 ± √(3² - 4×-1)}/2
= (3 ± √13)/2
(ii) 1/(x + 4) - 1/(x - 7) = 11/30 , x ≠ -4, 7
{(x - 7) - (x + 4)}/(x + 4)(x - 7) = 11/30
-11/(x² - 7x + 4x - 28) = 11/30
-1/(x² - 3x - 28) = 1/30
x² - 3x - 28 = -30
x² - 3x - 28 + 30 = 0
x² - 3x + 2 = 0
x² - x - 2x + 2 = 0
x(x - 1) - 2(x - 1) = 0
(x - 1)(x - 2) = 0
x = 1 , 2
Answered by
2
Solution :
i ) Given x - 1/x = 3 [ x ≠ 0 ]----( 1 )
________________________
We know that ,
( a + b )² = ( a - b )² + 4ab
________________________
=> ( x + 1/x )² = ( x - 1/x )² + 4
=> ( x + 1/x )² = 3² + 4 [ from ( 1 ) ]
=> ( x + 1/x )² = 9 + 4 = 13
=> x + 1/x = ± √13 ----( 2 )
add equations ( 1 ) & ( 2 ), we get
2x = 3 ± √13
x = [ 3±√13 ]/2
ii ) 1/(x+4) - 1/(x-7) = 11/30
=> [x-7 -(x+4)]/[(x+4)(x-7)] = 11/30
=> (x-7-x-4)/(x²-7x+4x-28) = 11/30
=> (-11)/(x²-3x-28) = 11/30
=> (-11 × 30 )/11 = x² - 3x - 28
=> -30 = x² - 3x - 28
=> x² - 3x - 28 + 30 = 0
=> x² - 3x + 2 = 0
=> x² -1x - 2x + 2 = 0
=> x( x - 1 ) - 2( x - 1 ) = 0
=> ( x - 1 )( x - 2 ) = 0
x - 1 = 0 or x - 2 = 0
x = 1 or x = 2
••••
i ) Given x - 1/x = 3 [ x ≠ 0 ]----( 1 )
________________________
We know that ,
( a + b )² = ( a - b )² + 4ab
________________________
=> ( x + 1/x )² = ( x - 1/x )² + 4
=> ( x + 1/x )² = 3² + 4 [ from ( 1 ) ]
=> ( x + 1/x )² = 9 + 4 = 13
=> x + 1/x = ± √13 ----( 2 )
add equations ( 1 ) & ( 2 ), we get
2x = 3 ± √13
x = [ 3±√13 ]/2
ii ) 1/(x+4) - 1/(x-7) = 11/30
=> [x-7 -(x+4)]/[(x+4)(x-7)] = 11/30
=> (x-7-x-4)/(x²-7x+4x-28) = 11/30
=> (-11)/(x²-3x-28) = 11/30
=> (-11 × 30 )/11 = x² - 3x - 28
=> -30 = x² - 3x - 28
=> x² - 3x - 28 + 30 = 0
=> x² - 3x + 2 = 0
=> x² -1x - 2x + 2 = 0
=> x( x - 1 ) - 2( x - 1 ) = 0
=> ( x - 1 )( x - 2 ) = 0
x - 1 = 0 or x - 2 = 0
x = 1 or x = 2
••••
Similar questions