Math, asked by PragyaTbia, 1 year ago

निम्नलिखित को सिद्ध कीजिए: \cos \left(\dfrac{3\pi}{4}+x\right) - \cos \left(\dfrac{3\pi}{4}-x\right) = -\sqrt{2}\,\sin x

Answers

Answered by Bhasksr
1

hope it helps

mark me brainliest please :)

Attachments:
Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

सिद्ध करना है -

\cos \left(\dfrac{3\pi}{4}+x\right) - \cos \left(\dfrac{3\pi}{4}-x\right) = -\sqrt{2}\,\sin x

L.H.S.  =  \cos \left(\dfrac{3\pi}{4}+x\right) - \cos \left(\dfrac{3\pi}{4}-x\right)

माना  कि   (\frac{3\pi }{4} +x)  = A

तथा     (\frac{3\pi }{4} -x) = B

∴ L.H.S.   =  cosA - cosB

              =   -2sin\frac{A+B}{2} .sin\frac{A-B}{2}

अब   A + B  =  \frac{3\pi }{4} +x + \frac{3\pi }{4} -x = \frac{3\pi }{2}

तथा   A - B  =  \frac{3\pi }{4} +x - ( \frac{3\pi }{4} -x)

                  =  \frac{3\pi }{4} +x - \frac{3\pi }{4} +x = 2x

∴ L.H.S.   =    -2sin\frac{3\pi }{4} . sin\frac{2x}{x}

               =  -2sin(\pi -\frac{\pi }{4}) . sin{x}

               =   -2sin\frac{\pi }{4} . sin{x}

                                        [ ∵ sin(π-θ) = sinθ]

             =   -2(\frac{1}{\sqrt{2} } ) . sinx

             =   - \sqrt{2} sinx  =  R.H.S.

     अतः  L.H.S.  = R.H.S.

Similar questions