Math, asked by PragyaTbia, 1 year ago

निम्नलिखित को सिद्ध कीजिए: \dfrac {\sin x + \sin 3x}{ \cos x + \cos 3x} = \tan 2x

Answers

Answered by Anonymous
5

Prove that : \dfrac {\sin x + \sin 3x}{ \cos x + \cos 3x} = \tan 2x



Sin x + Sin 3x ÷ Cos x + Cos 3x = tan 2x

2 Sin ( x + 3x ) /2 . Cos ( 3x - x ) /2 ÷ 2 Cos ( x + 3x )/2 . Cos ( 3x - x ) /2


2 Sin 2x . Cos x ÷ 2 Cos 2x. Cos x

Sin 2x . Cos x ÷ Cos 2x. Cos x

Sin 2x ÷ Cos 2x

tan 2x


Trigonometric Function Formula Used !


Sin A + Sin B = 2 Sin ( A + B)/2 COS (A - B)/2

Cos A + Cos B = 2 COS ( A+ B)/2 . Cos ( A - B )/2
Answered by Awesome98
0





= Sin x + Sin 3x ÷ Cos x + Cos 3x = tan 2x

= 2 Sin ( x + 3x ) /2 × Cos ( 3x - x ) /2 ÷ 2 Cos ( x + 3x )/2 × Cos ( 3x - x ) /2


= 2 Sin 2x . Cos x / 2 Cos 2x. Cos x

= Sin 2x . Cos x /Cos 2x. Cos x

= Sin 2x / Cos 2x

= tan 2x



Answer in Latex Version for better Results!

Sin x + Sin 3x ÷ Cos x + Cos 3x = tan 2x <br /> \\  \\ <br />= 2 Sin ( x + 3x ) /2 ×  Cos ( 3x - x ) /2 ÷ 2  Cos ( x + 3x )/2 ×  Cos ( 3x - x ) /2 <br /> \\  \\ <br /><br /> = 2 Sin 2x . Cos x / 2 Cos 2x. Cos x  \\  \\ <br /><br /> = Sin 2x . Cos x /Cos 2x. Cos x <br /> \\  \\ <br /> = Sin 2x /  Cos 2x <br /> \\  \\ <br />= tan 2x <br /><br />
Similar questions