Math, asked by PragyaTbia, 1 year ago

निम्नलिखित समीकरणों मे से प्रत्येक को हल कीजिए : \sqrt 3 x^2 - \sqrt 2 x + 3 \sqrt 3 = 0

Answers

Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

प्रश्नानुसार  

\sqrt 3 x^2 - \sqrt 2 x + 3 \sqrt 3 = 0

यहाँ    a  = √3

        b  =  -√2

        c  =  3√3

x=\frac{-b±\sqrt{b^{2}-4ac} }{2a} \\\\=\frac{-(-\sqrt{2} )±\sqrt{(-\sqrt{2} )^{2}-4*\sqrt{3} *3\sqrt{3} } }{2*\sqrt{3} } \\\\=\frac{\sqrt{2} ±\sqrt{2-4*3*3} }{2\sqrt{3} } \\\\=\frac{\sqrt{2} ±\sqrt{2-36} }{2\sqrt{3} } \\\\=\frac{\sqrt{2} ±\sqrt{-34} }{2\sqrt{3} }\\\\=\frac{\sqrt{2} ±\sqrt{34}i }{2\sqrt{3} }

अतः  इसका हल =\frac{\sqrt{2} ±\sqrt{34}i }{2\sqrt{3} }

Similar questions