Math, asked by PragyaTbia, 1 year ago

निम्नलिखित समीकरणों मे से प्रत्येक को हल कीजिए : x^2 + \dfrac{x}{\sqrt 2} + 1 = 0

Answers

Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

प्रश्नानुसार  

x^2 + \dfrac{x}{\sqrt 2} + 1 = 0

\sqrt{2} x^{2}+x+\sqrt{2} =0

यहाँ    a  =  √2

        b  =   1

        c   =  √2

x=\frac{-b±\sqrt{b^{2}-4ac} }{2a} \\\\=\frac{-1±\sqrt{(1)^{2}-4*\sqrt{2} *\sqrt{2} } }{2*\sqrt{2} } \\\\=\frac{-1±\sqrt{1-4*2} }{2\sqrt{2} } \\\\=\frac{-1±\sqrt{1-8} }{2\sqrt{2} } \\\\=\frac{-1±\sqrt{7} }{2\sqrt{2} }\\\\=\frac{-1±\sqrt{7}i }{2\sqrt{2} }

अतः  इसका हल   =\frac{-1±\sqrt{7}i }{2\sqrt{2} }

Similar questions