Math, asked by PragyaTbia, 1 year ago

निम्नलिखित समीकरणों मे से प्रत्येक को हल कीजिए : x^2 + x + \dfrac{1}{\sqrt 2} = 0

Answers

Answered by kaushalinspire
0

Answer:

Step-by-step explanation:

प्रश्नानुसार  

x^2 + x + \dfrac{1}{\sqrt 2} = 0

यहाँ    a  =  1

        b  = 1

        c   =  1/√2

x=\frac{-b±\sqrt{b^{2}-4ac} }{2a} \\\\=\frac{-1±\sqrt{(1)^{2}-4*1*\frac{1}{\sqrt{2} } } }{2*1} \\\\=\frac{-1±\sqrt{1-2\sqrt{2} } }{2} \\\\=\frac{-1±\sqrt{-(2\sqrt{2}-1) } }{2} \\\\=\frac{-1±\sqrt{2\sqrt{2}-1 }i }{2}

अतः  इसका हल =\frac{-1±\sqrt{2\sqrt{2}-1 }i }{2}

Similar questions