Math, asked by hhuz, 10 months ago

Namaste! Hello! Annyeong!

 \sqrt{\frac{1}{3}\sqrt{\frac{1}{3} \sqrt{\frac{1}{3}... \infty}}} \: \: \: \:

a) 1/2
b) 2/3
c) 1/3
d) 3/4

Full solution needed!!!! ​

Answers

Answered by Anonymous
292

Answer -

\sf{\green{Option\:c)}\:\dfrac{1}{3}}

\rule{200}2

Explanation -

Let  \implies\:\sf\sqrt{\dfrac{1}{3}\sqrt{\dfrac{1}{3} \sqrt{\dfrac{1}{3}... \infty}}}\:\:\: \: \: \: =\:x

\implies\: \sf\sqrt{\dfrac{1}{3}\sqrt{\dfrac{1}{3} \sqrt{\dfrac{1}{3}... \infty}}} \: \: \: =\:x

\implies \sf\sqrt{\dfrac{1}{3}\bigg(\sqrt{\dfrac{1}{3} \sqrt{\dfrac{1}{3}... \infty}}}\bigg) \: \: \: \: =\:x

\implies\:\sf\sqrt{ \dfrac{1}{3} \:   x \: } \:  =  \: x

Now, do squaring on both sides

\implies\:\sf \bigg(\sqrt{  \dfrac{1}{3} \:   x \: } \bigg)^{2}  \:  =  \: x ^{2}

\implies\:\sf{\dfrac{x}{3}\:=\:x^2}

\implies\:\sf{\dfrac{1}{3}\:=\:\dfrac{x^2}{x}}

\implies\:\sf{\dfrac{1}{3}\:=\:x}

\implies\:\sf{\bold{x\:=\:\dfrac{1}{3}}}

•°• \sf \sqrt{\dfrac{1}{3}\sqrt{\dfrac{1}{3} \sqrt{\dfrac{1}{3}... \infty}}} \: \: \: \: =\:\dfrac{1}{3}


Anonymous: Perfect !
Anonymous: Thank you ^^
ShivamKashyap08: Awesome !! :)
Anonymous: Thank you :)
StarrySoul: Awesome! Hmare shiksha ka asar xD :Aimee_Cute:
Anonymous: :no_mouth: theku xD
Answered by Anonymous
436

Answer:

\large \bold\red {(c)x =  \frac{1}{3} }

Step-by-step explanation:

We have been given that,

\sqrt{\frac{1}{3}\sqrt{\frac{1}{3} \sqrt{\frac{1}{3}... \infty}}}

Now,

To find its value,

Let's assume that,

\sqrt{\frac{1}{3}\sqrt{\frac{1}{3} \sqrt{\frac{1}{3}... \infty}}} \: \: \: \: = x

Clearly,

The series is defined up to Infinity,

Therefore,

We can take this as,

 =  > \sqrt{\frac{1}{3}(\sqrt{\frac{1}{3} \sqrt{\frac{1}{3}... \infty}})} \: \: \: \: = x \\    \\  =  >  \sqrt{ \frac{1}{3} x} = x

Now,

Squaring both the sides,

We get,

 =  >  {( \sqrt{ \frac{x}{3} }) }^{2}  =  {x}^{2}  \\  \\  =  >  \frac{x}{3} =  {x}^{2}   \\  \\  =  > 3 {x}^{2}  = x \\  \\  =  > 3 {x}^{2}  - x = 0 \\  \\  =  > x(3x - 1) = 0

Therefore,

We have,

 =  > x = 0

And,

 =  > 3x - 1 = 0 \\  =  > 3x = 1 \\  =  > x =  \frac{1}{3}

Thus,

We have,

 \large \bold{x = 0} \:  \: and \:  \:  \large \bold{x =  \frac{1}{3} }

But,

In the options we have only,

 \large \bold {(c)x =  \frac{1}{3} }

Hence,

(c) is the correct option.


ShivamKashyap08: Good work!! :)
StarrySoul: Nice one!
Similar questions