Chemistry, asked by DevanshDey, 2 months ago

name and two different forms of carbon with one use of it

Answers

Answered by Anonymous
0

Answer:

★ ═════════════════════ ★</p><p></p><p>\displaystyle \sf \red{\int \sqrt{ x \sqrt[3]{ \sf x \sqrt[4]{\sf x \sqrt[5]{\sf x\ .\ .\ }}}}\ dx}∫x3x4x5x . .  dx</p><p></p><p>\displaystyle \to \sf \int \sqrt{x}\ . \sqrt{\sqrt[3]{\sf x}}\ .\sqrt{\sqrt[3]{ \sqrt[4]{\sf x}}}\ . \sqrt{\sqrt[3]{\sqrt[4]{\sqrt[5]{\sf x}}}}\ .\ .\ .\ dx→∫x .3x .34x .345x . . . dx</p><p></p><p>\displaystyle \to \sf \int x^{\frac{1}{2}}\ .\ x^{\frac{1}{2}.\frac{1}{3}}\ .\ x^{\frac{1}{2}.\frac{1}{3}.\frac{1}{4}}\ .\ x^{\frac{1}{2}.\frac{1}{3}.\frac{1}{4}.\frac{1}{5}}\ .\ .\ .\ dx→∫x21 . x21.31 . x21.31.41 . x21.31.41.51 . . . dx</p><p></p><p>\displaystyle \sf \to \int x^{\frac{1}{2}}\ .\ x^{\frac{1}{2.3}}\ .\ x^{\frac{1}{2.3.4}}\ .\ x^{\frac{1}{2.3.4.5}}\ .\ .\ .\ dx→∫x21 . x2.31 . x2.3.41 . x2.3.4.51 . . . dx</p><p></p><p>\displaystyle \to \sf \int x^{\frac{1}{2}+\frac{1}{2.3}+\frac{1}{2.3.4}+\frac{1}{2.3.4.5}+...}\ dx→∫x21+2.31+2.3.41+2.3.4.51+... dx</p><p></p><p>\displaystyle \to \sf \int x^{\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...}\ dx→∫x1.21+1.2.31+1.2.3.41+1.2.3.4.51+... dx</p><p></p><p>\bullet\ \; \pink{\textsf{\textbf{n! = n x (n-1)! }}}∙ n! = n x (n-1)! </p><p></p><p>\displaystyle \to \sf \int x^{\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...}\ dx→∫x2!1+3!1+4!1+5!1+... dx</p><p></p><p>\bullet\ \; \sf \pink{\textsf{\textbf{e = }} \dfrac{\textsf{\textbf{1}}}{\textsf{\textbf{1}}} \textsf{\textbf{ + }} \dfrac{\textsf{\textbf{1}}}{\textsf{\textbf{1!}}} \textsf{\textbf{ + }} \dfrac{\textsf{\textbf{1}}}{\textsf{\textbf{2!}}} \textsf{\textbf{ + }} \dfrac{\textsf{\textbf{1}}}{\

Answered by fs558427
1

Answer: Diamond, Graphite.

Similar questions