name the type of triangle PQR formed by the point p(√2,√2) ,q(-√2,-√2),R(-√6,√6)
Answers
Answered by
142
first we find length of all sides of triangle.
e.g.
PQ=√{(2√2)^2+(2√2)^2}=4
QR=√{(√2+√6)^2+(√2-√6)^2}=4
RP=√{(√2+√6)^2+(√2-√6)^2}=4
here we see
PQ=QR=RP
hence ∆PQR is an equilateral triangle
e.g.
PQ=√{(2√2)^2+(2√2)^2}=4
QR=√{(√2+√6)^2+(√2-√6)^2}=4
RP=√{(√2+√6)^2+(√2-√6)^2}=4
here we see
PQ=QR=RP
hence ∆PQR is an equilateral triangle
Answered by
115
Answer:
Equilateral triangle
Step-by-step explanation:
P=(√2,√2)
Q=(-√2,-√2)
R=(-√6,√6)
To find PQ use distance formula :
Substitute the values in the formula :
To Find QR
Substitute the values in the formula :
To Find PR
Substitute the values in the formula :
Thus the sides of the triangle is PQ=QR=PR = 4 cm
Hence the given triangle is an equilateral triangle
Similar questions