Math, asked by jeniferourtejalina, 1 year ago

name the type of triangle PQR formed by the point p(√2,√2) ,q(-√2,-√2),R(-√6,√6)

Answers

Answered by abhi178
142
first we find length of all sides of triangle.
e.g.
PQ=√{(2√2)^2+(2√2)^2}=4
QR=√{(√2+√6)^2+(√2-√6)^2}=4
RP=√{(√2+√6)^2+(√2-√6)^2}=4
here we see
PQ=QR=RP
hence ∆PQR is an equilateral triangle
Answered by wifilethbridge
115

Answer:

Equilateral triangle

Step-by-step explanation:

P=(√2,√2)

Q=(-√2,-√2)

R=(-√6,√6)

To find PQ use distance formula :

d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

(x_1,y_1)=(\sqrt{2},\sqrt{2})

(x_2,y_2)=(-\sqrt{2},-\sqrt{2})

Substitute the values in the formula :

PQ=\sqrt{(-\sqrt{2}-\sqrt{2})^2+(-\sqrt{2}-\sqrt{2})^2}

PQ=\sqrt{(-2\sqrt{2})^2+(-2\sqrt{2})^2}

PQ=\sqrt{8+8}

PQ=\sqrt{16}

PQ=4

To Find QR

d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

(x_1,y_1)=(-\sqrt{2},-\sqrt{2})

(x_2,y_2)=(-\sqrt{6},\sqrt{6})

Substitute the values in the formula :

QR=\sqrt{(-\sqrt{6}+\sqrt{2})^2+(\sqrt{6}+\sqrt{2})^2}

QR=\sqrt{16}

QR=4

To Find PR

(x_1,y_1)=(\sqrt{2},\sqrt{2})

(x_2,y_2)=(-\sqrt{6},\sqrt{6})

Substitute the values in the formula :

PR=\sqrt{(-\sqrt{6}-\sqrt{2})^2+(\sqrt{6}-\sqrt{2})^2}

PR=\sqrt{16}

PR=4

Thus the sides of the triangle is PQ=QR=PR = 4 cm

Hence the given triangle is an equilateral triangle

Similar questions