Math, asked by yjchiranth123, 1 month ago

Nature of quadratic equation 2x^2+2x+2=0 is a)​

Attachments:

Answers

Answered by Anonymous
52

Answer:

Given :-

  • 2x² + 2x + 2 = 0

To Find :-

  • What is the nature of roots of the quadratic equation.

Formula Used :-

\clubsuit Discriminant Formula :

\mapsto \sf\boxed{\bold{\pink{Discriminant\: (D) =\: b^2 - 4ac}}}\\

Solution :-

Given Equation :

\implies \sf \bold{\purple{2x^2 + 2x + 2 =\: 0}}

where,

  • a = 2
  • b = 2
  • c = 2

According to the question by using the formula we get,

\longrightarrow \sf Discriminant\: (D) =\: (2)^2 - 4(2)(2)

\longrightarrow \sf Discriminant\: (D) =\: 2 \times 2 - 4 \times 2 \times 2

\longrightarrow \sf Discriminant\: (D) =\: 4 - 4 \times 4

\longrightarrow \sf Discriminant\: (D) =\: 4 - 16

\longrightarrow \sf Discriminant\: (D) =\: - 12

\longrightarrow \sf\bold{\red{Discriminant\: (D) =\: - 12 < 0}}

\therefore The nature of roots of the quadratic equation is real, irrational and distinct.

Hence, the correct options is option no (a) Real, irrational and distinct.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

EXTRA INFORMATION :-

Nature of Roots :

- 4ac is the discriminate of the quadratic equation :

- 4ac = 0, then the roots are real & equal.

- 4ac > 0, then the roots are real & unequal.

- 4ac < 0, then the roots are imaginary & no real roots.

Answered by Ishu995
48

The natural of roots of the quadratic equation

2x² + 2x + 2 = 0 are ;

Formula Used :-

\begin{gathered} \sf\boxed{\bold{\pink{Discriminant\: (D) =\: b^2 - 4ac}}}\\\end{gathered}

where,

a = 2

b = 2

c = 2

 (D) =\: (2)^2 - 4(2)(2)

 (D) =\: 2 \times 2 - 4

 (D) =\: 4 - 4 \times 4

 (D) =\: 4 - 16

 (D) =\: - 12

12 < 0

∴ The nature of roots of the quadratic equation is real, irrational and distinct.

  • Option a) is correct

  • Real, irrational and distinct.
Similar questions