Math, asked by ShashwatGupta9935, 1 year ago

NCERT class 10 Introduction to trigonometry example 15

Attachments:

Answers

Answered by SK6731
81

Answer:

Step-by-step explanation:

In pic

.....

Hope it helped.

Attachments:
Answered by Pitymys
123

Answer:

To Prove: \frac{sin\,\theta-cos\,\theta+1}{sin\,\theta+cos\,\theta-1}=\frac{1}{sec\,\theta-tan\,\theta}

Consider,

LHS

=\frac{sin\,\theta-cos\,\theta+1}{sin\,\theta+cos\,\theta-1}

Divide numerator and denominator by cos\,\theta

=\frac{tan\,\theta-1+sec\,\theta}{tan\,\theta+1-sec\,\theta}

=\frac{(tan\,\theta+sec\,\theta)-1}{(tan\,\theta-sec\,\theta)-1}

=\frac{(tan\,\theta+sec\,\theta)-1}{(tan\,\theta-sec\,\theta)-1}\times\frac{(tan\,\theta-sec\,\theta)+1}{(tan\,\theta-sec\,\theta)+1}

=\frac{(tan^2\,\theta-sec^2\,\theta)-(tan\,\theta-sec\,\theta)}{(tan\,\theta-sec\,\theta+1)(tan\,\theta-sec\,\theta)}

=\frac{-1-tan\,\theta+sec\,\theta}{(tan\,\theta-sec\,\theta+1)(tan\,\theta-sec\,\theta)}

=\frac{-(1+tan\,\theta-sec\,\theta)}{(tan\,\theta-sec\,\theta+1)(tan\,\theta-sec\,\theta)}

=\frac{-1}{tan\,\theta-sec\,\theta}

=\frac{1}{sec\,\theta-tan\,\theta}

= RHS

Hence Proved

Similar questions