Math, asked by pratyushprakhyatsing, 1 month ago

need answer with proper explanation urgently 50 points quite a big deal ​

Attachments:

Answers

Answered by SHDebiswarup
0

Answer:

-0.25902581391

Step-by-step explanation:

Hope it helps you

Answered by hfhviyfd
2

Step-by-step explanation:

\huge \red{ \boxed{ \blue{ \boxed{ \green {question}}}}}

 \frac{1}{3 - 2 \sqrt{2} +  \sqrt{5}  }

  \red{ \boxed{ \blue{ \boxed{  \orange {solving \: the \: question}}}}}

here we have to rationalise the denominator

=

 \frac{1}{3 - 2 \sqrt{2} +  \sqrt{5}  }  \times  \frac{3 - 2 \sqrt{2} -  \sqrt{5}  }{3 - 2 \sqrt{2} -  \sqrt{5}  }  =  \\  \frac{3 - 2 \sqrt{2} -  \sqrt{5}  }{ ({3 - 2 \sqrt{2} })^{2}  -  { \sqrt{5} }^{2} }  \\  \frac{3 - 2 \sqrt{2} -  \sqrt{5}  }{ {3}^{2}  -2 \times  2 \sqrt{2} \times  \sqrt{5}  +  \sqrt{ {5}^{2} } - 5  }  \\  \frac{3 - 2 \sqrt{2}  - 5}{9 - 4 \sqrt{10} + 5 - 5  }  \\  \frac{3 - 2 \sqrt{2} - 5 }{9 - 4 \sqrt{10} }

again rationalise till the denominator not becomes a integer

  \frac{3 - 2 \sqrt{2} - 5 }{9 - 4 \sqrt{10} }  \times  \frac{9 + 4 \sqrt{10} }{9 + 4 \sqrt{10} }  \\  =  \frac{27 + 12 \sqrt{10   }  - 18 \sqrt{2} - 8 \sqrt{20}  - 45 - 20 \sqrt{10}  }{81 - 160}    \\  \frac{ - 18 - 8 \sqrt{10}  - 18 \sqrt{2}  - 16 \sqrt{5} }{ - 79} \\  - cancel \: from \: all

Similar questions