Math, asked by wpuinyabati, 9 days ago

need answers asap to this question given below ​

Attachments:

Answers

Answered by tennetiraj86
4

Step-by-step explanation:

Solutions :-

1)

From the given figure

Consider ∆ ABC ,

AB = 20 units

DC = 30 units

∠ABC = X°

∠CAD = 60°

∠ADC = ∠ ADB = 90°

In ∆ ADC,

tan 60° = Opposite side to 60° / Adjacent side to 60°

=> tan 60° = DC / AD

=> tan 60° = 30/AD

=> √3 = 30/AD

=> AD × √3 = 30

=> AD = 30/√3

=> AD = (10×√3×√3)/√3

=> AD = 10√3 units

Now,

In ∆ ADB,

sin x° = Opposite side to x° / Hypotenuse

=> sin x° = AD / AB

=> sin x° = 10√3/20

=> sin x° = √3/2

=> sin x° = sin 60°

Therefore, x ° = 60°

The value of x = 60°

2)

Given that

3 cos 80° cosec 10° + 2 sin 59° sec 31°

=> 3 cos(90°-10°) cosec 10°+2 sin (90°-31°) sec 31°

We know that

sin (90° - A) = cos A

cos (90°-A) = sin A

=> 3 sin 10° cosec 10° + 2 cos 31° sec 31°

=> 3 sin 10° (1/sin 10°) + 2 cos 31° (1/cos 31°)

=> 3 (sin 10°/sin 10°) + 2 (cos 31°/cos 31°)

=> 3 (1) + 2(1)

=> 3+2

=> 5

Therefore,

3cos 80°cosec 10°+2cos 59°sec 31° = 5

Used formulae:-

sin A = Opposite side to A / Hypotenuse

tan A = Opposite side to A / Adjacent side to A

sec A = 1/ cos A

cosec A = 1/ sin A

sin (90°- A) = cos A

cos (90° - A) = sin A

tan 60° = 3

sin 60° = 3/2

Attachments:
Answered by krohit68654321
1

Step-by-step explanation:

Step-by-step explanation:

Solutions :-

1)

From the given figure

Consider ∆ ABC ,

AB = 20 units

DC = 30 units

∠ABC = X°

∠CAD = 60°

∠ADC = ∠ ADB = 90°

In ∆ ADC,

tan 60° = Opposite side to 60° / Adjacent side to 60°

=> tan 60° = DC / AD

=> tan 60° = 30/AD

=> √3 = 30/AD

=> AD × √3 = 30

=> AD = 30/√3

=> AD = (10×√3×√3)/√3

=> AD = 10√3 units

Now,

In ∆ ADB,

sin x° = Opposite side to x° / Hypotenuse

=> sin x° = AD / AB

=> sin x° = 10√3/20

=> sin x° = √3/2

=> sin x° = sin 60°

Therefore, x ° = 60°

The value of x = 60°

2)

Given that

3 cos 80° cosec 10° + 2 sin 59° sec 31°

=> 3 cos(90°-10°) cosec 10°+2 sin (90°-31°) sec 31°

We know that

sin (90° - A) = cos A

cos (90°-A) = sin A

=> 3 sin 10° cosec 10° + 2 cos 31° sec 31°

=> 3 sin 10° (1/sin 10°) + 2 cos 31° (1/cos 31°)

=> 3 (sin 10°/sin 10°) + 2 (cos 31°/cos 31°)

=> 3 (1) + 2(1)

=> 3+2

=> 5

Therefore,

3cos 80°cosec 10°+2cos 59°sec 31° = 5

Used formulae:-

→ sin A = Opposite side to A / Hypotenuse

→ tan A = Opposite side to A / Adjacent side to A

→ sec A = 1/ cos A

→ cosec A = 1/ sin A

→ sin (90°- A) = cos A

→ cos (90° - A) = sin A

→ tan 60° = √3

→ sin 60° = √3/2

Similar questions