Math, asked by Anonymous, 21 days ago

Need urgent help !!!

Let's say a complex number is defined as,  z = i^i.
Then find the value of, magnitude of the complex number  |z| and the amplitude of the complex  Amp(z).

Answers

Answered by Anonymous
4

Answer:

Amp(z) = -π/2

|z| = -1

Step-by-step explanation:

My phone is not good so picture is little blur.

I gave answer in copy mark me brainliest if it helped you

Attachments:
Answered by mathdude500
14

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:z =  {i}^{i}

So, let we express i in its polar form.

Let assume that

\rm :\longmapsto\:i = r(cosx + i \: sinx) -  -  - (1)

\rm :\longmapsto\:i = rcosx + i \:r sinx

So on comparing the real and Imaginary parts, we get

\rm :\longmapsto\:rcosx = 0 -  -  -  - (2)

and

\rm :\longmapsto\:r \: sinx = 1 -  -  - (3)

On squaring equation (2) and (3) and adding, we get

\rm :\longmapsto\: {r}^{2} {cos}^{2}x +  {r}^{2} {sin}^{2}x = 1

\rm :\longmapsto\: {r}^{2} ({cos}^{2}x +  {sin}^{2}x) = 1

\rm :\longmapsto\: {r}^{2} = 1

\bf\implies \:\boxed{ \tt{ \: r = 1 \: }}

On substituting r = 1 in equation (2) and (3), we get

\rm :\longmapsto\:cosx = 0

and

\rm :\longmapsto\:sinx = 1

\bf\implies \:\boxed{ \tt{ \: x \:  =  \: \dfrac{\pi}{2} \:  \: }}

On substituting the values of r and x, in equation (1), we get

\rm :\longmapsto\:i = 1\bigg(cos\dfrac{\pi}{2} + isin\dfrac{\pi}{2}  \bigg)

\bf\implies \:i = cos\dfrac{\pi}{2} +  \: i \: sin\dfrac{\pi}{2}

Hence, in exponential form, it is represented as

\bf\implies \:i \:  =  \:  {\bigg(e \bigg) }^{i\dfrac{\pi}{2} }

Hence,

\bf\implies \: {i}^{i}  \:  =  \:  {\bigg(e \bigg) }^{i\dfrac{\pi}{2}  \times i}

\bf\implies \: {i}^{i}  \:  =  \:  {\bigg(e \bigg) }^{ {i}^{2} \dfrac{\pi}{2}}

\bf\implies \: {i}^{i}  \:  =  \:  {\bigg(e \bigg) }^{ \:  -  \:  \dfrac{\pi}{2}}

can be further rewritten as

\bf\implies \: {i}^{i}  \:  =  \:  {\bigg(e \bigg) }^{ \:  -  \:  \dfrac{\pi}{2}}  \times 1

\bf\implies \: {i}^{i}  \:  =  \:  {\bigg(e \bigg) }^{ \:  -  \:  \dfrac{\pi}{2}}  \times (1 + 0i)

\bf\implies \: {i}^{i}  \:  =  \:  {\bigg(e \bigg) }^{ \:  -  \:  \dfrac{\pi}{2}}\bigg(cos0 + i \: sin0\bigg)

Hence,

\rm \implies\:\boxed{ \tt{ \: arg(z) = 0 \: }}

and

\rm \implies\:\boxed{ \tt{ \: amp(z) =  {\bigg(e\bigg)}^{ -  \: \dfrac{\pi}{2}}  \: }}

Similar questions