Math, asked by BloomingBud, 1 year ago

Need well explained answer

both answers

Attachments:

Answers

Answered by Anonymous286
1
Hope it helps
:)
Note:For the 21st sum I have used index to log form conversion hope u know it...
Attachments:

Anonymous: nope.. she doesn't know
Anonymous286: ok
Answered by BrainlyPopularman
6

(21.)

GIVEN :

 \\ \:  \: { \huge{.}} \:  \: { \bold{ {a}^{x} =  {b}^{y} =  {c}^{z}}} \\

 \\ \:  \: { \huge{.}} \:  \: { \bold{ \dfrac{b}{a} =  \dfrac{c}{b}  }} \\

TO PROVE :

 \\ \:  \: { \huge{.}} \:  \: { \bold{ \dfrac{2x}{x + z} =  \dfrac{y}{x}}} \\

SOLUTION :

• Let –

 \\ \implies { \bold{ {a}^{x} =  {b}^{y} =  {c}^{z} =  \lambda}} \\

• We should write this as –

 \\ \implies { \bold{ a =  \lambda^{ \frac{1}{x}}   \: , \: b=  \lambda^{ \frac{1}{y}} \: , \:  c=  \lambda^{ \frac{1}{z}}}} \\

• Now use other condition –

 \\ \implies { \bold{ \dfrac{b}{a} =  \dfrac{c}{b}  }} \\

 \\ \implies { \bold{  {b}^{2}  = ac }} \\

• Now put the value of a , b and c

 \\ \implies { \bold{ {(\lambda^{ \frac{1}{y}})}^{2}  =  (\lambda^{ \frac{1}{x}})(\lambda^{ \frac{1}{z}}) }} \\

 \\ \implies { \bold{ {(\lambda^{ \frac{2}{y}})}  =  (\lambda^{ \frac{1}{x} +  \frac{1}{z} })}} \\

• Now compare –

 \\ \implies { \bold{ \dfrac{2}{y} =  \dfrac{1}{x} +  \dfrac{1}{z}}} \\

 \\ \implies { \bold{ \dfrac{2}{y} =  \dfrac{x + z}{xz} }} \\

• We should write this as –

 \\ \implies { \bold{ \dfrac{2z}{x + z} =  \dfrac{y}{x} }} \\

 \\  \:  \:  \:  \:  \:  \:  \:  { \bold{ \underbrace{ Hence \:  \: proved }}} \\

 \\ \rule{220}{2} \\

(22.)

GIVEN :

 \\ \:  \: { \huge{.}} \:  \: { \bold{ {3}^{x + y} = 81 }} \\

 \\ \:  \: { \huge{.}} \:  \: { \bold{ {(81)}^{x  -  y} = 3}} \\

TO FIND :

Value of 'x' = ?

SOLUTION :

• According to the first condition –

 \\ \implies { \bold{ {3}^{x + y} = 81 }} \\

• We should write this as –

 \\ \implies { \bold{ {3}^{x + y} =  {3}^{4} }} \\

• We should write this as –

 \\ \implies { \bold{x + y = 4 \:  \:  \:  \:  -  -  -  eq.(1)}} \\

• According to the second condition –

 \\ \implies { \bold{ {(81)}^{x  -  y} = 3}} \\

• We should write this as –

 \\ \implies { \bold{ {( {3}^{4} )}^{x  -  y} = 3}} \\

 \\ \implies { \bold{ {(3)}^{4(x  -  y)} = 3}} \\

• Now compare –

 \\ \implies { \bold{x - y =  \dfrac{1}{4} \:\:\:\ ---eq.(2)}} \\

• Now add eq.(1) and eq.(2) –

 \\ \implies { \bold{x + y + x - y = 4 +  \dfrac{1}{4} }} \\

 \\ \implies { \bold{2x =  \dfrac{17}{4} }} \\

 \\ \implies \large { \boxed{ \bold{x =  \dfrac{17}{8} }}} \\

• Now Using eq.(1) –

 \\ \implies { \bold{ \dfrac{17}{8}  + y = 4}} \\

 \\ \implies { \bold{  y = 4 - \dfrac{17}{8}  }} \\

 \\ \implies { \bold{  y =  \dfrac{32 - 17}{8}  }} \\

 \\ \implies \large{ \boxed { \bold{ y =  \dfrac{15}{8} } }} \\

Similar questions