Math, asked by allysia, 1 year ago

○●● No. 61 please ●●○

Attachments:

Answers

Answered by Anonymous
2

SOLUTION:-

Given:

 {x}^{m}  =  {a}^{m}   \: {cos}^{4}  \theta \:  \: and \:  \:  {y}^{n}  =  {b}^{m}  \:  {sin}^{4}  \theta

Therefore,

 \frac{ {x}^{n} }{ {a}^{m} }  =  {cos}^{4}  \theta

We can write as,

 {cos}^{2}  \theta = ( \frac{ {x}^{n} }{ {a}^{m} } ) {}^{ \frac{1}{2} }

Similarly,

 =  > \frac{ {y}^{n} }{ {b}^{m} }  =  {sin}^{4}  \theta \\  \\  =  >  {sin}^{2}  \theta =(  \frac{ {y}^{n} }{ {b}^{m} } ) {}^{ \frac{1}{2} }

We know that;

 {sin}^{2}  \theta +  {cos}^{2}  \theta = 1 \\  \\ so \\ =  >  (\frac{ {y}^{ \frac{n}{2} } }{ {b}^{ \frac{m}{2} } }  +  \frac{ {x}^{ \frac{n}{2} } }{ {a}^{ \frac{m}{2} } } ) = 1

Hence,

Proved.

Option (a)✓

Hope it helps ☺️

Similar questions