Math, asked by Shristy12, 1 year ago

☆No Spam Answers ☆
☆If u don't know pls let others ☆
☆Pls Answer step by step ☆

Attachments:

Answers

Answered by pragya80
0
so, your question is solved above
Attachments:
Answered by siddhartharao77
0
Given :  \frac{3}{5 -  \sqrt{3} } +  \frac{2}{5 +  \sqrt{3} }

After rationalizing the denominators, We get

= \ \textgreater \   \frac{3}{5 -  \sqrt{3} } *  \frac{5 +  \sqrt{3} }{5 +  \sqrt{3} } +  \frac{2}{5 +  \sqrt{3} } *  \frac{5 -  \sqrt{3} }{5 -  \sqrt{3} }

= \ \textgreater \   \frac{3(5 +  \sqrt{3}) }{(5 +  \sqrt{3})(5 -  \sqrt{3})  } +  \frac{2(5 -  \sqrt{3}) }{(5 +  \sqrt{3})(5 -  \sqrt{3} )}

= \ \textgreater \   \frac{3(5 +  \sqrt{3} ) + 2(5 -  \sqrt{3}) }{(5 +  \sqrt{3} (5 -  \sqrt{3}) }

= \ \textgreater \   \frac{15 + 3 \sqrt{3}+ 10 - 2 \sqrt{3}  }{5^2  - ( \sqrt{3} )^2 }

= \ \textgreater \   \frac{25 +  \sqrt{3} }{25 - 3}

= \ \textgreater \   \frac{25 +  \sqrt{3} }{22}



Hope this helps!

siddhartharao77: :-)
Similar questions