Physics, asked by KLSMEJ, 1 month ago

No spamming,Very important guys,Please solve this Find the angle between two vectors 2î +3j+k and -3i + 6k ,Answer is 90 degrees explain​

Answers

Answered by Abhinav3583
0

Answer:

electric field vector between the plates. In unit-vector notation, what uniform magnetic

Answered by TrustedAnswerer19
72

Answer:

 \theta \:  =  {90}^{ \circ}

Explanation:

Let,

 \sf \vec{a} = 2 \hat{i }+ 3 \hat{j }+ \hat{ k} \\ \sf \vec{b} = -  3 \hat{i }+ 6\hat{ k} \\  \\  \bigstar \:  \green {\sf \: angle \: berween \: them \:  \theta \:  =  \: to \: find}

Now,

 \sf  |\vec{a} |  =  \sqrt{ {2}^{2} +  {3}^{2}   +  {1}^{2} }  =  \sqrt{14}  \\ \sf  |\vec{b} | =  \sqrt{ {( - 3)}^{2} +  {0}^{2} +  {6}^{2}   }  =  \sqrt{45}  \\  \\   \sf\vec{a}. \vec{b} = (2 \hat{i }+ 3 \hat{j }+ \hat{ k}). (- 3 \hat{i }+ 6 \hat{ k}) \\  \sf \:  \:  \:  \:  \:  \:  = 2  \times ( - 3) + 3 \times 0 + 1 \times 6  \\  \:  \:  \:  \:  \:  \: =  - 6 + 0 + 6 \\ \:  \:  \:  \:  \:  \:    = 0

We know that,

 \:  \:  \:  \:  \sf \vec{a}. \vec{b} =  | \vec{a}| . | \vec{b}| cos \theta \\  \sf \implies \: cos \theta =  \frac{\vec{a}. \vec{b}}{| \vec{a}| . | \vec{b}|}  \\  \sf \implies \:\sf  \: cos \theta =  \frac{0}{ \sqrt{14}  \times  \sqrt{45} }  = 0 \\ \sf \implies \:  \ \:   \theta =  {cos}^{ - 1} 0 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \therefore \sf \theta =  {90}^{ \circ}

Short technique :

 \green{ \boxed{ \sf \:  if  \: \:  \:  \vec{a}. \vec{b} = 0 \:  \:  \: then \:  \:  \theta =  {90}^{ \circ} } }\:

Similar questions