Math, asked by azak18, 5 months ago

#no spammm here....​

Attachments:

Answers

Answered by BrainlyEmpire
7

\large{\red{\bold{\underline{Given:}}}}

\sf \: Coordinates \: of \: the \: vertices \: are: \:  x(6,3), \: y(9,4) \: and \: z(5,7)

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: Centroid \: of \: the \: triangle

\large{\blue{\bold{\underline{Formula \: Used:}}}} \\  \\ \sf \:Coordinates \: of \:Centroid =   \: (\frac{x_{1} + x_{2} + x_{3}}{3} ),( \frac{y_{1} + y_{2} + y_{3}}{3})

\large{\red{\bold{\underline{Solution:}}}} \\  \\  \: \sf \: On \: considering \: the \: respective \: coordinates \: as :

 \sf \: x(6,3) \: \rightarrow \: (x_{1}, y_{1}) \\ \\\sf \: y(9,4) \: \rightarrow \: (x_{2}, y_{2})  \\  \\  \sf \: z(5,7) \: \rightarrow \: (x_{3}, y_{3})

\large{\pink{\bold{\underline{Now:}}}} \\ \\ \rightarrow \: \sf \: Centroid = ( \frac{6 + 9 + 5}{3}) ,( \frac{3 + 4 + 7}{3} ) \\ \\  \rightarrow \sf \: Centroid = ( \frac{20}{3}) , (\frac{14 }{3} ) \\  \\ \rightarrow \sf \: Centroid = (6.6,4.6)

\large{\orange{\bold{\underline{Therefore:}}}} \\  \\  \sf \: The \: coordinates \: of \: Centroid \: of \: the \: triangle \\ \sf \: is \: (6.6,4.4).

Answered by Anonymous
32

Answer:

\large{\red{\bold{\underline{Given:}}}}

\sf \: Coordinates \: of \: the \: vertices \: are: \:  x(6,3), \: y(9,4) \: and \: z(5,7)

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: Centroid \: of \: the \: triangle

\large{\blue{\bold{\underline{Formula \: Used:}}}} \\  \\ \sf \:Coordinates \: of \:Centroid =   \: (\frac{x_{1} + x_{2} + x_{3}}{3} ),( \frac{y_{1} + y_{2} + y_{3}}{3})

\large{\red{\bold{\underline{Solution:}}}} \\  \\  \: \sf \: On \: considering \: the \: respective \: coordinates \: as :

 \sf \: x(6,3) \: \rightarrow \: (x_{1}, y_{1}) \\ \\\sf \: y(9,4) \: \rightarrow \: (x_{2}, y_{2})  \\  \\  \sf \: z(5,7) \: \rightarrow \: (x_{3}, y_{3})

\large{\pink{\bold{\underline{Now:}}}} \\ \\ \rightarrow \: \sf \: Centroid = ( \frac{6 + 9 + 5}{3}) ,( \frac{3 + 4 + 7}{3} ) \\ \\  \rightarrow \sf \: Centroid = ( \frac{20}{3}) , (\frac{14 }{3} ) \\  \\ \rightarrow \sf \: Centroid = (6.6,4.6)

\large{\orange{\bold{\underline{Therefore:}}}} \\  \\  \sf \: The \: coordinates \: of \: Centroid \: of \: the \: triangle \\ \sf \: is \: (6.6,4.4).

Similar questions