Math, asked by bansil003, 1 year ago

❌ NO SPAMS ❌
DON'T ANSWER IF YOU DON'T KNOW


GIVEN a,b,c,d are FOUR REAL NUMBERS such that |a- b| =2 ,
|b - c| = 3 , |c - d| = 4 . Then Find the value of |a - d|.


✖️remember answer is not 9 ✖️

Answers

Answered by sushmita
8

Answer:

16

Step-by-step explanation:

(1+a)(1+b)(1+c)(1+d)

= (1 + ab + a + b)(1 + cd + c + d)

= 1 + cd + c + d + ab + abcd + abc + abd + a + acd + ac + ad + b + bcd + bc + bd

= 1 + abcd + a + b + c + d + ab + ac + bc + bd + ad + cd + abc + abd + acd + bcd

abcd = 1

so,,

abc + d ≥2 , abd + c ≥2 , bcd + a ≥2 , acd + b ≥2

≥ 1 + 1 + 2 + 2 + 2 + 2 + ab + ac + bc + bd + ad + cd

abcd = 1

so ab + cd ≥ 2 , ac + bd ≥ 2 , ad + bc

≥ 2

≥ 10 + 2 +2 + 2

≥ 16

So 16 is the right answer

__________________________

Verification

let say a , b , c , d all are = 1

abcd = 1

(1+a)(1+b)(1+c)(1+d) = 2 * 2* 2* 2 = 16

Similar questions