Math, asked by ilham1107, 10 months ago

❌NO SWAMP ANSWER ❌

PLEASE GIVE ANSWER FAST
 \sqrt{ \frac{1 +  \: sin \: x \: }{1 +  \: sin \: x} }  = sec \: x \:  +  \: tan \: x
 \sqrt{ \frac{1 + sin \: x}{1 +  \: sin \: x} }  = cosec \: x \:  +  \: cot \: x \:
by using trigonometric identities and properties , and correct mathematical properties,
solve L.H.S.
of above statements and prove which statement in true either a) or b).​

Answers

Answered by presentmoment
0

Question:

Prove that $\sqrt{\frac{1+\sin x}{1-\sin x}}=\sec x+\tan x.

Solution:

$\text{LHS}=\sqrt{\frac{1+\sin x}{1-\sin x}}

Multiply the numerator and denominator by the conjugate 1+\sin x.

       $=\sqrt{\frac{1+\sin x}{1-\sin x} \times \frac{1+\sin x}{1+\sin x}}

       $=\sqrt{\frac{(1+\sin x)^{2}}{(1-\sin x)(1+\sin x)}}

Using the algebraic property, (a+b)(a-b)=a^2-b^2 in the denominator

      $=\sqrt{\frac{(1+\sin x)^{2}}{\left(1-\sin ^{2} x\right)}}

We know that \sin^2x+\cos^2=1 \ \ \ \ \ \ \ \ \Rightarrow(1-\sin^2x)=\cos^2x

      $=\sqrt{\frac{(1+\sin x)^{2}}{\cos ^{2} x}}

Square and square roots are getting cancelled.

      $=\frac{1+\sin x}{\cos x}

      $=\frac{1}{\cos x}+\frac{\sin x}{\cos x}

      =\sec x+\tan x

      = RHS

LHS = RHS

$\sqrt{\frac{1+\sin x}{1-\sin x}}=\sec x+\tan x

Hence proved.

To learn more....

https://brainly.in/question/15205739

Similar questions