Chemistry, asked by nandhithk, 7 months ago

NO2 dissociates as NO2(g) NO(g) + 1/2O2(g)

If vapour density at equilibrium is found to be 20 when 1 mole of NO2 is taken initially in 1 L flask. The percentage degree of dissociation of NO2 is

Answers

Answered by Anonymous
3

Given:

Vapour Density (VD) = 20

Initial amount of  \sf NO_2 = 1 mole in 1 L flask

To Find:

Percentage degree of dissociation of  \sf NO_2  \rm (\alpha)

Answer:

 \rm \ \ \ \ \  \ \ \ \ \ \ {NO_2} _{(g)}  \longrightarrow {NO}_{ (g)} +  \dfrac{1}{2}{O_2}_{(g)}

\rm t = 0 : 1  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \ \ \ \ \ \ \ 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \  \ \ 0

 \rm t = t: 1 - \alpha  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \alpha \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \ \:  \:  \dfrac{\alpha}{2}

Average Molecular Mass:

 \rm M_{avg} = 2 \times VD \\ \\   \rm = 2   \times 20 \\  \\ \rm =4 0

Molecular Mass of  \sf NO_2 = 96

Molecular Mass of  \sf NO = 30

Molecular Mass of  \sf O_2 = 32

 \rm \leadsto 40 = \dfrac{(1 - \alpha)  {M}_{{NO}_{2}} + \alpha \times {M}_{NO} + \dfrac{\alpha}{2}  {M}_{{O}_{2}}}{(1 - \alpha) + \alpha + \dfrac{\alpha}{2} } \\  \\   \rm \leadsto 40 = \dfrac{(1 - \alpha)  \times 96 + \alpha \times 30 + \dfrac{\alpha}{2}  \times 32}{1  + \dfrac{\alpha}{2}} \\  \\  \rm \leadsto 40 \bigg(1 +  \dfrac{\alpha}{2}   \bigg) = 96 - 96 \alpha  + 30 \alpha  + 16 \alpha  \\  \\  \rm \leadsto 40 + 20 \alpha  = 96 - 50 \alpha  \\   \\  \rm \leadsto 20 \alpha  + 50 \alpha  = 96 - 40 \\  \\  \rm \leadsto 70  \alpha  = 56 \\  \\  \rm \leadsto  \alpha  =  \dfrac{56}{70}  \\  \\  \rm \leadsto  \alpha  = 0.8 \\  \\  \rm \leadsto \% \alpha  = 0.8 \times 100 \% \\  \\  \rm \leadsto \% \alpha  = 80 \%

 \therefore Percentage degree of dissociation of  \sf NO_2  \rm (\alpha) = 80%

Similar questions