now, give me this answer..
Answers
Answer:
im triangle adc using pythagoras theorem
DC^2 + AD^2=AC^2
5^2+AD^2=13^2
25+AD^2=169
AD^2=169-25
AD^2=144
AD=√144
AD=12
therefore tan x=5 by 12
in triangle ABD
BD =21-5=16
AD=12
using pythagoras theorem
AB^2= BD^2+AD^2
AB^2= 16^2+12^2
AB^2= 256+144
AB=√400
AB=20
there fore cos y=base by hypotenous
=16 by 20
and sin y
=perpendicular by hypotenous
12 by20
Answer:
The values for i) tanx=5/12, ii) cosy=4/5 and, iii) siny=3/5
Step-by-step explanation:
First let us calculate the unknown sides.
This can be done by using Pythagoras theorem i.e., Hypotenuse²=Adjacent²+Opposite²
Consider ΔADC.
Here we know AC=13 and DC=5.
Then from Pythagoras theorem,
AC²=AD²+DC²
⇒13²=AD²+5²
⇒AD²=13²-5²
⇒AD²=169-25
⇒AD²=144
⇒AD=√144
⇒AD=12
Now consider the ΔABD
Here AD=12, BD=BC-DC=21-5=16
then from Pythagoras theorem
AB²=AD²+BD²
⇒AB²=12²+16²
⇒AB²=144+256
⇒AB²=400
⇒AB=√400
⇒AB=20
wkt
for a right angled triangle
sinФ=, cosФ= and tanФ=
(i) tanx===
(ii) cosy====
(iii) siny====