nth derivative of sin^3x cos^5x dx
Answers
Answered by
1
Step-by-step explanation:
Let y=sin3xcos5x ……..(1)
we have to find
dx
2
d
2
y
=?
on differentiating equation (1) wrt x we get
dx
dy
dx
d
(sin3xcos5x)
dx
dy
=3cos3xcos5x−5sin5xsin3x [using multiplication rule]
again differentiating wrt x we get
dx
2
d
2
y
=3
dx
d
(cos3xcos5x)−5
dx
d
(sin5xsin3x)
=3[−3sin3xcos5x−5cos3xsin5x]−5[5cos5xsin3x+3cos3xsin5x]
⇒−9sin3xcos5x+15cos3xsin5x−25cos5xsin3x−15cos3xsin5x
⇒−34sin3xcos5x.
Similar questions