Math, asked by anukriti90, 1 year ago

nth term of a sequence is the linear polynomial in n prove that it is an arithmetic progression

Answers

Answered by shobhit355
2
Introductory phrases, which help you present new ideas.

tout d’abord – firstlypremièrement – firstly

Connecting phrases, which help you connect ideas and sections.

et – andde plus – in additionégalement – alsoensuite – nextdeuxièmement – secondlyor – soainsi que – as well aslorsque – when, while

Contrasting phrases, which help you juxtapose two ideas.

en revanche – on the other handpourtant – howevernéanmoins – meanwhile, however
Answered by Anonymous
3

{\green {\boxed {\mathtt {✓verified\:answer}}}}

let \: the \: nth \: term \: of \: a \: given \: progression \: be \: given \: by \\ t _{n} = an + b \:  \: where \: a \: and \:  \: b \:  \: are \: constant \\ then \: t _{n - 1} = a(n - 1) + b = (an + b) - a \\  \therefore \: t _{n} - t _{n - 1} = (an + b) - (an + b)  + a = a \:  \\ which \: is \: constant \\ hence \: the \: given \: progression \: is \: an \: ap

Similar questions