Math, asked by nihana6666, 3 months ago

nth term of an arithmetic sequence is 7n+2.what is the 10th term​

Answers

Answered by Anonymous
8

Given

7n + 2

To find

10th term of AP

Now when n = 1

7 × 1 + 2

7 + 2

9

When n = 2

7 × 2 + 2

14 + 2

16

When n = 3

7 × 3 + 2

21 + 2

23

When n = 4

7 × 4 + 2

28 + 2

30

We Get Sequence

9 , 16 , 23 , 30

Formula of nth term

Tₙ = a + (n - 1)d

Now

T₁₀ = a + (10 - 1)d

First term (a)= 9

First term (a)= 9Common Difference (d) = 16 - 9 = 7

T₁₀ = 7 + 9 × 9

T₁₀ = 7 + 81

T₁₀ = 88

Answer

T₁₀ = 88

Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf \: Given - \begin{cases} &\sf{a_n = 7n + 2} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\: find - \begin{cases} &\sf{a_{10}}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

Given that,

\rm :\implies\: \boxed{ \pink{ \bf \: a_n \:  =  \tt \:7n + 2 }}

Put n = 10, we get

\rm :\implies\:a_{10} \:  = 7 \times 10 + 2

\rm :\implies\:a_{10} = 70 + 2

\rm :\implies\:a_{10} = 72

Similar questions