Math, asked by pp244997, 5 months ago

Number of persons in various age groups in a town is given in the following table : ​

Attachments:

Answers

Answered by Anonymous
56

 \underline{ \underline{\sf{  \bigstar\qquad Required \:AnsWer :  \qquad \bigstar}}} \\  \\

\begin{tabular}{|c|c|c|c|c|c|c|}\cline{1-7} Age group & 1-14 & 15 - 29& 30 - 44 & 45 - 59 &60 - 74&75 and above\\\cline{1-7}No. of person's&200000&160000&120000&120000&80000&40000\\\cline{1-7}\end{tabular}

\setlength{\unitlength}{2.5mm}\begin{picture}(10,10)\multiput(0,0)(2,0){30}{\line(0,1){38}}\multiput(0,0)(0,2){20}{\line(1,0){58}}\linethickness{0.45mm}\put(22,2){\vector(2,0){35}}\put(24,2){\line(-2,0){18}}\put(6,15){\vector(0,2){10}}\put(6,20){\line(0,-2){18}}\multiput(5.3,4)(0,2){10}{\line(1,0){1.3}}\put(6,2){\circle*{0.8}}\linethickness{1cm}\put(10,2){\line(0,1){20}}\put(18,2){\line(0,1){16}}\put(26,2){\line(0,1){12}}\put(34,2){\line(0,1){12}}\put(42,2){\line(0,1){8}}\put(50,2){\line(0,1){4}}\put(2.5,2){\sf 0}\put(1,4){\sf 20000}\put(1,6){\sf 40000}\put(1,8){\sf 60000}\put(1,10){\sf 80000}\put(0.8,12){\sf 100000}\put(0.2,14){\sf 1200000}\put(0.2,16){\sf 1400000}\put(0.2,18){\sf 1600000}\put(0.2,20){\sf 1800000}\put(0.4,22){\sf 200000}\put(8.2,0.5){\sf 1 - 14}\put(24,0.5){\sf 30 - 44}\put(16,0.5){\sf 15 - 29}\put(32,0.5){\sf 45 - 59}\put(40,0.5){\sf 60 - 74}\put(47,0.5){\sf 75 and above}\put(43,28.5){\sf $\spadesuit$  X axis $\rightarrow$ Age group}\put(43,24.5){\sf $\spadesuit$ Y axis $\rightarrow$  total persons}\put(4.2,34.2){\textsf{\textbf{Scale = 1 unit = 20 thousand }}}\end{picture}

\large\underline{ \underline{\sf{  \bigstar\qquad Solution :  \qquad \bigstar}}} \\  \\

\bullet\:\textsf{(a) Which two group have same population ? } \\

\longrightarrow\:\textsf{ \textbf{30-44 and 45-59}} \textsf{ have the same population.} \\  \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\bullet\:\textsf{(b) All person's in the age group of 60 and above are called senior citizens. }\\   \:  \:  \:  \:  \:  \:  \:  \:  \: \textsf{How many senior citizens are there in town  ?} \\

:\implies\textsf{Total number of senior citizens = No. of people in 60 - 74 + No. of people in 74 and above} \\

:\implies\textsf{Total number of senior citizens = 80000 + 40000} \\  \\  \\

:\implies \underline{ \boxed{ \textsf {Total number of senior citizens = 120000}}}\\\\\\

\therefore\:\underline{\textsf{The total number of senior citizens in the town is \textbf{120000}}}.

Answered by NewGeneEinstein
14

Table:-

\boxed {\begin{array}{c|c|c|c|c|c|c}\sf Age \:group & 1-14 & 15 - 29& 30 - 44 & 45 - 59 &60 - 74&75 and above\\\frac {\qquad\qquad\qquad}{}&\frac {\qquad\qquad}{}&\frac{\qquad\qquad}{}&\frac {\qquad \qquad}{}&\frac {\qquad\qquad}{}&\frac {\qquad\qquad}{}&\frac {\qquad\qquad}{}\\No. of\:person's&200000&160000&120000&120000&80000&40000\\\end{array}}

Bar graph:-

\setlength{\unitlength}{2.5mm}\begin{picture}(10,10)\linethickness{0.45mm}\put(22,2){\vector(2,0){35}}\put(24,2){\line(-2,0){18}}\put(6,15){\vector(0,2){10}}\put(6,20){\line(0,-2){18}}\multiput(5.3,4)(0,2){10}{\line(1,0){1.3}}\put(6,2){\circle*{0.8}}\linethickness{1cm}\put(10,2){\line(0,1){20}}\put(18,2){\line(0,1){16}}\put(26,2){\line(0,1){12}}\put(34,2){\line(0,1){12}}\put(42,2){\line(0,1){8}}\put(50,2){\line(0,1){4}}\put(2.5,2){\sf 0}\put(1,4){\sf 20000}\put(1,6){\sf 40000}\put(1,8){\sf 60000}\put(1,10){\sf 80000}\put(0.8,12){\sf 100000}\put(0.2,14){\sf 1200000}\put(0.2,16){\sf 1400000}\put(0.2,18){\sf 1600000}\put(0.2,20){\sf 1800000}\put(0.4,22){\sf 200000}\put(8.2,0.5){\sf 1 - 14}\put(24,0.5){\sf 30 - 44}\put(16,0.5){\sf 15 - 29}\put(32,0.5){\sf 45 - 59}\put(40,0.5){\sf 60 - 74}\put(47,0.5){\sf 75 and above}\put(43,28.5){\sf $\star$  X axis $\rightarrow$ Age group}\put(43,24.5){\sf $\star$ Y axis $\rightarrow$  total persons}\put(7,35){\underline {\textsf{\textbf{Scale = 1 unit = 20 thousand }}}}\end{picture}

Questions:-

  1. Which two groups have same population?
  2. All persons in the age group of 60 and above called senior citizens are there in town?

Solution-1:-

\\\qquad\quad\displaystyle\sf {:}\longrightarrow Groups\:namely\:30-44\:and\:45-69\:have\:same\:population\:(i.e\:20k)

Solution-2:-

\\\qquad\quad\displaystyle\sf {:}\longrightarrow Total\:number\:of\:senior\:citizens=No.of\:citizens\:in\:60-74\:group+No.of\:citizens\:in\:74\:and\:above\;group

\\\qquad\quad\displaystyle\sf {:}\longrightarrow Total\:numver\:of\:senior\:citizens=80000+40000

\\\qquad\quad\displaystyle\sf {:}\longrightarrow Total\:numver\:of\:senior\:citizens=12000

Similar questions