Math, asked by sudesharora151, 10 months ago

Number one please answer the question

Attachments:

Answers

Answered by AbhijithPrakash
6

Answer:

\displaystyle\left|\frac{5}{7}-\frac{2}{3}\right|+\left|\frac{3}{14}-\frac{5}{7}\right|=\frac{23}{42}\quad \left(\mathrm{Decimal:\quad }\:0.54761\dots \right)

Step-by-step explanation:

\displaystyle\left|\frac{5}{7}-\frac{2}{3}\right|+\left|\frac{3}{14}-\frac{5}{7}\right|

\displaystyle\black{\left|\frac{5}{7}-\frac{2}{3}\right|}

\displaystyle\pink{\mathrm{Join~}\frac{5}{7}-\frac{2}{3}:}

\displaystyle\frac{5}{7}-\frac{2}{3}

\gray{\mathrm{Least\:Common\:Multiplier\:of\:}7,\:3:\quad 21}

\gray{\mathrm{Adjust\:Fractions\:based\:on\:the\:LCM}}

\displaystyle=\frac{15}{21}-\frac{14}{21}

\displaystyle\gray{\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}}

\displaystyle=\frac{15-14}{21}

\gray{\mathrm{Subtract\:the\:numbers:}\:15-14=1}

\displaystyle=\frac{1}{21}

\displaystyle=\left|\frac{1}{21}\right|

\gray{\mathrm{Apply\:absolute\:rule}:\quad \left|a\right|=a,\:a\ge 0}

\displaystyle\gray{\left|\frac{1}{21}\right|=\frac{1}{21}}

\displaystyle=\frac{1}{21}

\displaystyle\black{\left|\frac{3}{14}-\frac{5}{7}\right|}

\displaystyle\pink{\mathrm{Join~}\frac{3}{14}-\frac{5}{7}:}

\displaystyle \frac{3}{14}-\frac{5}{7}

\gray{\mathrm{Least\:Common\:Multiplier\:of\:}14,\:7:\quad 14}

\gray{\mathrm{Adjust\:Fractions\:based\:on\:the\:LCM}}

\displaystyle =\frac{3}{14}-\frac{10}{14}

\displaystyle\gray{\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}}

\displaystyle=\frac{3-10}{14}

\gray{\mathrm{Subtract\:the\:numbers:}\:3-10=-7}

\displaystyle=\frac{-7}{14}

\displaystyle\gray{\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{-a}{b}=-\frac{a}{b}}

\displaystyle=-\frac{7}{14}

\gray{\mathrm{Cancel\:the\:common\:factor:}\:7}

\displaystyle=-\frac{1}{2}

\displaystyle=\left|-\frac{1}{2}\right|

\gray{\mathrm{Apply\:absolute\:rule}:\quad \left|-a\right|=a}

\displaystyle\gray{\left|-\frac{1}{2}\right|=\frac{1}{2}}

\displaystyle=\frac{1}{2}

\displaystyle=\frac{1}{21}+\frac{1}{2}

\black{\mathrm{Simplify}}

\displaystyle\frac{1}{21}+\frac{1}{2}

\gray{\mathrm{Least\:Common\:Multiplier\:of\:}21,\:2:\quad 42}

\gray{\mathrm{Adjust\:Fractions\:based\:on\:the\:LCM}}

\displaystyle=\frac{2}{42}+\frac{21}{42}

\displaystyle\gray{\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}}

\displaystyle=\frac{2+21}{42}

\gray{\mathrm{Add\:the\:numbers:}\:2+21=23}

\displaystyle=\frac{23}{42}


Anonymous: Nice answer :-)
Similar questions