Math, asked by vishaltg, 7 months ago

number y is chosen from a set of positive integers less than 10. What is the probability
nat ((10 + x)/x) > X?​

Answers

Answered by mothukurujyothsna9
31

Step-by-step explanation:

10+x/x>x

10+1/1>1

10+2/2>2

10+3/3>3

10+4/4<4........when X=4 wrong❌

3/10

Answered by isha00333
9

GivenL a number y is chosen from 1 to 10.

To find: the probability that\[\frac{{\left( {10 + x} \right)}}{x} &gt; x\]?

Solution:

Understand that total possible outcomes=10

Find the favourable outcomes.

Put x=1.

\[ \Rightarrow \frac{{\left( {10 + 1} \right)}}{1} &gt; 1 = 9 &gt; 1\]

Putx=2

\[ \Rightarrow \frac{{\left( {10 + 2} \right)}}{2} &gt; 2 = 6 &gt; 2\]

Put x=3.

\[ \Rightarrow \frac{{\left( {10 + 3} \right)}}{3} &gt; 3 = 4.33 &gt; 3\]

Put x=4

\[ \Rightarrow \frac{{\left( {10 + 4} \right)}}{4} &gt; 4 = 3.5 &lt; 4\]

Observe that, \[\frac{{\left( {10 + x} \right)}}{x} &gt; x\] hold true only when x=1,2,3.

Therefore, number of favourable outcome=3

Find the probability that \[\frac{{\left( {10 + x} \right)}}{x} &gt; x\]?.

Probability\[ = \frac{{favorable\,outcome}}{{Total\,Outcome}}\]

                 \[ = \frac{3}{{10}}\]

Hence, the probability that \[\frac{{\left( {10 + x} \right)}}{x} &gt; x\] is \[\frac{3}{{10}}\].

Similar questions