Math, asked by asjish665, 10 months ago

Numerator of a fraction is 5 more than its denominator. If 4 is added to numerator and denominator, the fraction obtained is 6/5. Find the fraction

Answers

Answered by Anonymous
16

Given :

  • Numerator of a fraction is 5 more than its denominator.
  • If 4 is added to numerator and denominator, the fraction obtained is 6/5

To Find :

  • The fraction.

Solution :

Let the numerator of the fraction be x.

Let the denominator of the fraction be y.

Fraction => \mathtt{\dfrac{x}{y}}

Case 1 :

\mathtt{Numerator\:=\:Denominator\:+\:5}

\longrightarrow \mathtt{x=y+5}

\mathtt{x-y=5} _____(1)

Case 2 :

\longrightarrow \mathtt{\dfrac{Numerator\:+\:4}{Denominator+4}} = \mathtt{\dfrac{6}{5}}

\longrightarrow \mathtt{\dfrac{x+4}{y+4}} = \mathtt{\dfrac{6}{5}}

\longrightarrow \mathtt{5(x+4)\:=\:6(y+4)}

\longrightarrow \mathtt{5x+20=6y+24}

\longrightarrow \mathtt{5x-6y=24-20}

\mathtt{5x-6y=4} ______(2)

Multiply equation 1 by 6,

\longrightarrow \mathtt{6\:\times\:x\:-\:6\:\times\:y\:=\:6\:\times\:5}

\mathtt{6x-6y=30} ____(3)

Solve equation 2 and equation 3 to find value of x and y.

Subtract equation 3 from 2,

\longrightarrow \mathtt{5x\:-6y-(6x-6y)\:=\:4-30}

\longrightarrow \mathtt{5x-6y\:-6x+6y\:=\:-26}

\longrightarrow \mathtt{-x\:=\:-26}

\longrightarrow \mathtt{x=26}

\large{\boxed{\rm{\red{Numerator\:=\:x\:=\:26}}}}

Substitute x = 26 in equation 1,

\longrightarrow \mathtt{x-y=5}

\longrightarrow \mathtt{26-y=5}

\longrightarrow \mathtt{-y=5-26}

\longrightarrow \mathtt{-y=-21}

\longrightarrow \mathtt{y=21}

\large{\boxed{\rm{\blue{ Denominator\:=\:y\:=\:21}}}}

✪ We have the required numerator and denominator of the fraction.

\large{\boxed{\rm{\purple{ Fraction\:=\:{\dfrac{x}{y}\:=\:{\dfrac{26}{21}}}}}}}

Similar questions