o is a point in the interior of triangle ABC, OD is perpendicular on BC, OE is perpendicular on AC, AND OF is perpendicular on AB prove that square of AF + square of BD + square of CE = square of AE + square of BF + square of CD
Answers
Answer:
Step-by-step explanation:
In ∆ AOB, OD is the bisector of angle AOB
OA/OB =AD/DB---------------eq(1)
Theorem used here
[The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle]
In ∆BOC .OE is the bisector of angle BOC
OB/OC = BE/EC---------eq(2)
In ∆COA, OF is the bisector of angle COA
OC/OA =CF/FA-----------eq(3)
Multiplying eq 1, 2, 3
(OA/OB) * (OB/OC) * (OC/OA) = (AD/DB) * (BE/EC) * (CF/FA)
1= (AD/DB) * (BE/EC) * (CF/FA)
DB*EC*FA = AD*BE*CF
-----------------------------------------------------------------------------------------------------
AD*BE*CF = DB*EC*FA
---------------------------------------------------------------------------------------------------
Hope this will help you.....
Answer:
Hey
Answer in attachment
Please mark me brainlist