Math, asked by prajaktakhurpe9921, 1 year ago

O is any point in the interior of ∆ABC. Bisectors of ∠AOB,∠BOC and ∠AOC intersect sideAB, sideBC, side AC inF, D andE respectively.Prove thatBF *AE ×CD = AF×CE × BD

Answers

Answered by niharikashah4
1

Answer:


Step-by-step explanation:




In ∆ AOB, OD is the bisector of angle AOB


OA/OB =AD/DB---------------eq(1)

 

Theorem used here


[The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle]


In ∆BOC .OE is the bisector of angle BOC


OB/OC = BE/EC---------eq(2)


In  ∆COA, OF is the bisector of angle COA


OC/OA =CF/FA-----------eq(3)


Multiplying eq 1, 2, 3 


(OA/OB) * (OB/OC)  * (OC/OA) = (AD/DB) * (BE/EC) * (CF/FA)


1= (AD/DB) * (BE/EC) * (CF/FA)


DB*EC*FA = AD*BE*CF

-----------------------------------------------------------------------------------------------------


AD*BE*CF = DB*EC*FA

---------------------------------------------------------------------------------------------------

Hope this will help you.....



Answered by anshumeena274
0

Answer:

bhejo bhejo bhejo bhejo bhejo bhejo bhejo yyyyy

Similar questions