O is any point inside triangle ABC the bisector of angle AOB, angle BOC and angle COA meet the sides AB,BC and CA the point D,E and F respectively show that AD*BE*CF=DB*EC*FA
Answers
Answered by
45
see the picture
use angular bisector theorem.
use angular bisector theorem.
Attachments:
Answered by
22
In ∆ AOB, OD is the bisector of angle AOB
OA/OB =AD/DB---------------eq(1)
Theorem used here
[The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle]
In ∆BOC .OE is the bisector of angle BOC
OB/OC = BE/EC---------eq(2)
In ∆COA, OF is the bisector of angle COA
OC/OA =CF/FA-----------eq(3)
Multiplying eq 1, 2, 3
(OA/OB) * (OB/OC) * (OC/OA) = (AD/DB) * (BE/EC) * (CF/FA)
1= (AD/DB) * (BE/EC) * (CF/FA)
DB*EC*FA = AD*BE*CF
-----------------------------------------------------------------------------------------------------
AD*BE*CF = DB*EC*FA
---------------------------------------------------------------------------------------------------
Hope this will help you....
Similar questions
English,
8 months ago
English,
8 months ago
Social Sciences,
8 months ago
Biology,
1 year ago
CBSE BOARD XII,
1 year ago