Math, asked by sweety3690, 1 year ago

o p q is a quadrant of a circle with Centre O and radius 7cm an isosceles triangle O A B is cut of the quadrant such that BQ = AP equals to 3 cm calculate the area of the shaded region

Answers

Answered by balasahebcomp
5

Answer:


Step-by-step explanation:

Area of Shaded Region APQB = Area of quadrant OPQ - Area of Triangle OAB

Area of Quadrant = 1/4 * \pi r^{2}

                              = 1/4 * 3.14* 7^{2}

                              = 38.465 cm^{2}.

Area of Triangle OAB = OB*OA/2

                                    = 4*4/2

                                     = 8 cm^{2}.

Area of Shaded Region = Area of quadrant OPQ - Area of Triangle OAB

                                  = 38.465 - 8

                                   = 30.465  cm^{2}.

Attachments:
Similar questions